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1 Introduction

Superconducting circuits have attracted growing interest in the scientific community as a tool to
implement quantum optics experiments in the microwave regime as well as a platform for quantum
technologies.

Examples of applications of superconducting circuits include:

• Quantum optics and circuit QED (cQED) experiments, exploring the fundamental interac-
tions between microwave light and matter;

• High-resolution cryogenic detectors, widely used for particle physics experiments (e.g. dark
matter and neutrino physics) and astroparticle physics applications (e.g. for telescopes).

• Quantum sensing, exploiting the quantum nature of superconductivity to build sensors based
on quantum tunnelling, superposition and entanglement phenomena.

• Quantum computing, realising superconducting artificial atoms that work as qubits, where
the first two energy levels |0⟩ and |1⟩ are used as computational basis.

The key advantage of superconducting circuits as experimental platform for quantum appli-
cations is the fact that superconductivity is a macroscopic quantum phenomenon. This implies
that relatively large, i.e. ”macroscopic” superconducting structures, with sizes in the order of tens
or hundreds of micrometers, preserve their quantum nature. This feature allows to design and
produce circuits, with incredibly high flexibility, to control and exploits quantum phenomena. One
example is the transmon qubit, a superconducting circuit widely used as basic building block for
superconducting quantum processors, which we will discuss in section 7.

Quantum states are typically very fragile and the environmental disturbances, such as thermal
noise, can be detrimental, easily destroying quantum coherence. Superconducting devices are
operated at very low temperatures, typically in the order of millikelvin, and in the microwave
regime, at frequencies of few GHz. Therefore, it results that the thermal noise kBT is much lower
than the energy scale h̄ω, with ω = 2πf and f ≈ 5GHz. This condition:

kBT ≪ h̄ω (1)

is in fact crucial to allow the exploitation of quantum circuits to build qubits and other quantum
devices.

Other advantages of the superconducting platform include:

• Strong light-matter coupling: In cQED, the interaction between photons and atoms is given
by the ratio between the coupling strength and the bare energy of the excitations; with
superconducting circuits, very high level of interactions can be achieved, enabling experiments
in the strong and ultra-strong regimes;

• The (quasi) absence of dissipation in superconducting circuits: Superconductivity allows
zero-resistance current flow in the circuit, which brings the dissipation close to zero;

• Scalability: Superconducting circuits are typically microfabricated on silicon chips, exploiting
cleanroom techniques readily developed by the semiconductor industry, allowing for high
control and high scalability.

In these lectures, we will start from the basic components to build a superconducting circuits,
namely coplanar waveguides, superconducting resonators and Josephson junctions. By combining
this elements in a circuit, a wide range of superconducting quantum devices can be realised. We
will discuss two interesting examples of superconducting circuits based on Josephson junctions,
namely the Josephson Parametric Amplifier (JPA) and the transmon qubit.
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2 Microwave Coplanar Waveguides

In order to build superconducting circuits, we need to be able to transmit microwaves, i.e. electro-
magnetic waves with frequencies in the order of few GHz, in a controlled way.

In the 3D world, we use coaxial cables to transmit microwaves. A coaxial cable comprises an
inner conductor and an outer ground separated by dielectric material, as shown in figure 1.

Figure 1: A coaxial cable, comprising the inner conductor, the dielectric insulator, the shield which serves
as ground and a plastic jacket which serves as protection.

In a superconducting planar circuit, structures must feature a planar geometry and they are
realised exploiting planar microfabrication techniques. Therefore, we need to implement a planar
version of a coaxial cable. The simplest planar implementation of a transmission line is the copla-
nar waveguide shown in figure 2. A coplanar waveguide consists of a planar central conductor and
a planar ground plane separated from the central conductor by a gap. In a typical superconduct-
ing circuit, a superconducting thin film (e.g. an aluminium film with a thickness in the order of
100 nm) is deposited on a silicon substrate and patterned by removing the film from the gap region.
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(a) 3D view of a coplanar waveguide.

centre conductor ground plane
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(b) 2D view of a coplanar waveguide.

Figure 2: Coplanar waveguide comprising the central conductor and the ground plane.

A coplanar waveguide is characterised by an inductance, given by the geometrical inductance
of the central conductor, and by a capacitance, given by the facing metallic planes of the central
conductor and the ground.
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Therefore, we can define two important parameters of a coplanar waveguide:

• The distributed inductance L′, i.e. the inductance per unit of length;

• The distributed capacitance C ′, i.e. the capacitance per unit of length;

To calculate L′ and C ′, conformal mapping techniques are typically exploited. These are
algebraic methods which are used to map a complex geometry, such as a coplanar waveguide, to
a simpler and known geometry, such as a parallel plate capacitor. In this way it is possible to
calculate in a rigorous way L′ and C ′ for a given geometry of a coplanar waveguide. The free
parameters for each geometry are the width of the central conductor and the width of the gap
between the central conductor and the ground plane.

From the distributed distributed capacitance L′ and the capacitance C ′, we can calculate the
characteristic impedance Z0 of the waveguide:

Z0 =

√
L′

C ′ (2)

and the phase velocity vph of the microwave travelling inside the waveguide:

vph =
1√
L′C ′

(3)

We can visualise the microwave travelling inside the waveguide looking at the electromagnetic
field distribution, with the electric component E⃗ and the magnetic component the electric compo-
nent B⃗, as shown in figure 3.

magnetic field
electric field

dielectric
metal

Figure 3: Visualisation of the field distribution of a quasi-TEM mode travelling in a coplanar waveguide.

3 Superconducting Resonators

Starting from coplanar waveguides, we can build planar microwave cavities. To do this, we can
exploit interference and superposition effects of microwaves travelling in a waveguide with a certain
boundary conditions.

In figure 4, we consider the case of a medium terminated with a closed end, equivalent to
a coplanar waveguide terminated to ground. This configuration causes reflection of the electric
component of the wave with a phase shift of π. A standing wave in a medium is a resonator: we
have built a superconducting microwave resonator.

In the animation1, we can see how an incoming wave (green) travelling from left to right in a
medium is bouncing back when reflected at the end of the medium (right end of the figure). The
reflected way (blue) is interfering with the incoming way (green) and the resulting superposition
of the two gives a standing wave (red).

Different boundary conditions result in different phase shifts and therefore different standing
waves. In particular, we can think to two different configurations, namely the quarter-wave res-
onator and the half-wave resonator.

1https://upload.wikimedia.org/wikipedia/commons/5/5d/Waventerference.gif
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Figure 4: Animation here: https://upload.wikimedia.org/wikipedia/commons/5/5d/

Waventerference.gif. The incoming wave (green) is reflected and the back-travelling wave (blue)
is interfering resulting in the standing wave (red).

Quarter-wave resonator A coplanar waveguide is interrupted at one end by a capacitor, which
prevents current flowing, and is terminated to ground at the other end, allowing maximum current
flow, as shown in figure 5a. We therefore have a current node (i.e. zero current, maximum voltage)
at one end and a voltage node (i.e. maximum current, zero voltage) at the other end. The electrical
components of the microwave is forced to be zero at one end and maximum at the other end. The
resulting standing wave is characterised by a wavelength λ which corresponds to four times the
length of the resonator l: λ = 4l. In other words, a quarted of the wave fits in the resonator, hence
generating a quarter-wave resonator.

Half-wave resonator A coplanar waveguide is interrupted at the two ends by two capacitors,
which prevent flowing of current, as shown in figure 5b.. We therefore have two current nodes
(i.e. zero current, maximum voltage) at the two ends, forcing the electrical components of the
microwave to be zero. The resulting standing wave is characterised by a wavelength λ which cor-
responds to twice the length of the resonator l: λ = 2l. In other words, half wave fits in the
resonator, hence generating a half-wave resonator.

quarter-wave resonator

centre conductor ground plane

1

(a) Quarter-wave resonator.

half-wave resonator

centre conductor ground plane

1 2

(b) Half-wave resonator.

Figure 5: Planar resonators with different boundary conditions. The ports used to probe the resonators
with a microwave tone are shown in red.

In figure 6 the quarter-wave (left) half-wave (right) configurations are visualised, including the
allowed harmonics. Note that for the quarter-wave resonator only the odd harmonics are allowed
by the boundary conditions.

By characterising superconducting resonators with a Vector Network Analyser (VNA), their
resonance frequencies can be extracted. A VNA is an RF instrument with two ports, which gener-
ates a microwave signal at port i and it compares in terms of amplitude and phase with the signal
detected at port j, where i, j ∈ {1, 2}. The VNA returns the so called scatter parameters Sij . The
parameters S11 and S22 describe the forward and backwards reflections, while S21 and S12 describe
the forward and backwards transmissions (ref Pozar).

Using a VNA, we can probe a quarter-wave resonator with a reflection measurement, sending
a signal to the port 1 of the device (see figure 5a) and sweeping the frequency of the signal. The
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Figure 6: Schematics of the wave fitting in quarter-wave and half-wave resonators and their harmonics.

plot in figure 7a shows the measured reflection as a function of the signal frequency:

• When the signal frequency does not match the resonance frequency, the reflection is total
(i.e. at the maximum of 0 dB = 100% reflection). This happens because the sent microwave
cannot fit in the quarter-wave resonator and therefore is entirely reflected back to port 1 of
the device.

• When the signal frequency matches the resonance frequency, the reflection is at the minimum,
generating a dip in the reflection graph. Under this condition, the microwave can enter the
resonator and it is trapped there, so that the reflection is minimal.

Similarly, we can probe a half-wave resonator with a transmission measurement, sending a
signal to the port 1 of the device and reading the transmission at port 2 of the device (see figure 5b,
while sweeping the frequency of the signal. The plot in figure 7b) shows the measured transmission
as a function of the signal frequency:

• When the signal frequency does not match the resonance frequency, the transmission is very
low (ideally −∞. This happens because the sent microwave cannot fit in the half-wave
resonator and therefore is entirely reflected back to port 1 of the device.

• When the signal frequency matches the resonance frequency, the signal can enter the resonator
and be transmitted to the other side, generating a peak in the transmission graph. Under
this condition, the microwave is trapped inside the resonator and subsequently transmitted
both backwards (to port 1 of the device) and forward (to port 2 of the device).

In both cases, reflection and transmission are measured in logarithmic units of dB.
The superconducting resonators that we have reviewed are not tunable and their resonance

frequency is fixed by the geometry of the circuit. Moreover, so far the circuit dynamics we have
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(a) Response of a quarter-wave resonator. (b) Response of a half-wave resonator.

Figure 7: Microwave responses of superconducting resonators, showing the resonance frequency.

encountered is fully linear. In order to build interesting circuits for quantum optics and cQED
experiments as well as to realise superconducting qubits, we need to introduce tunability and
non-linearity in our superconducting circuits. In the superconducting toolbox, we have a special
element that behaves as a controllable, dissipationless and tunable non-linear inductance, namely
the Josephson junction.

4 Josephson Junctions

The Josephson junction is one of the most important circuit elements in the field of superconducting
quantum devices. It consists of a sandwich of two superconducting electrodes separated by a
thin insulating barrier which allows coherent tunnelling of Cooper pairs, the charge carriers in a
superconductor.

Practically, Josephson junctions are realised overlapping two thin superconducting films, for
example ∼100 nm thick Al films, separated by a ∼1 nm aluminium oxide barrier. A schematic of
a Josephson junction is shown in figure 8.

Josephson equations

To describe the physics of a Josephson junction, we should recall the foundations of the Bardeen
– Cooper – Schrieffer (BCS) theory, which describes the phenomenon of superconductivity as the
result of the condensation of Cooper pairs. At low temperatures, i.e. when the energy of the sys-
tem is highly reduced, an attractive potential between electrons is generated which causes binding
of electrons into Cooper pairs. Thanks to their bosonic nature, Cooper pairs form a large Bose-
Einstein condensate. Under these conditions, the quantum mechanical character of the ground
state of the system appears on a macroscopic scale.

As a result, a single wave function Ψ(x, t) can describe a macroscopic number of Cooper pairs
that condensate in the same quantum state. We can therefore write a macroscopic wave function
describing a macroscopic piece of superconductor, such as each superconductor forming a Josephson
junction:

Ψ(x, t) =
√
ρeiϕ(x,t) (4)

where ϕ is the common phase and ρ is the density in the macrostate, with |Ψ|2 = ρ.

The time evolution of the macroscopic wave function in stationary conditions follows the
Schrödinger equation:
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ih̄
∂Ψ

∂t
= HΨ (5)

Bearing this in mind, we can derive the dynamics of a Josephson junction by introducing two
macroscopic wave functions Ψ1 and Ψ2 for the two superconductors (see figure 8) and using the
Schrödinger equation with a coupling term describing the overlap of the wave functions in the
barrier. The full derivation is beyond the scope of these lectures and it can be found in Feynman’s
lecture The Schrödinger Equation in a Classical Context: A Seminar on Superconductivity (see
the section Suggested Textbooks and Reviews).

As a result, the dynamic of a Josephson junction is described by two simple and elegant equa-
tions called Josephson equations.

Figure 8: A simple schematic of a Josephson junction. The two superconducting electrodes are described
by the macroscopic wavefunctions Ψ1 and Ψ2.

First Josephson equation The first Josephson equation describes the current I flowing in the
Josephson junction:

I = Ic sin(ϕ) (6)

where Ic is a parameter of the junction called critical current and ϕ = ϕ2 − ϕ1 is the phase differ-
ence between the two superconductors.

From equation 6, it is evident that even in the absence of an applied voltage across the Josephson
junction, a non-zero current can flow, up to the critical current value Ic. This phenomenon is
called dc Josephon effect and it is a direct consequence of the finite phase difference between the
macroscopic wave functions in the two superconductors.

Second Josephson equation The second Josephson equation described the evolution of the
phase difference ϕ:

∂ϕ

∂t
=

2eV

h̄
(7)

where V is the voltage applied across the junction.

From equation 7, we observe that a non-zero voltage across the Josephson junction generates
an oscillating current across the junction. This is easily shown by integrating equation 7: ϕ(t) =
2eV
h̄ t+ ϕ0, and inserting the term ϕ(t) in equation 6:

I(t) = Ic sin

(
2eV

h̄
+ ϕ0

)
(8)

Equation 8 describes the so called ac Josephson effect, generating an ac current when a voltage
is applied.
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Josephson inductance

The Josephson equations not only describe the dc and ac Josephson effects previously reviewed,
but they also determine that the behaviour of a Josephson junction can be modelled as a non-linear
inductance.

Starting from equation 6, we can write the time derivative as:

∂I

∂t
= Ic cosϕ

∂ϕ

∂t
=

2πIc
Φ0

V cosϕ (9)

where Φ0 = h/2e is the flux quantum.

We observe that the time derivative of the current is proportional to a voltage, representing
an inductive behaviour, according to the general definition of inductance L: V = L∂I

∂t . We can
therefore define the Josephson inductance LJ and derive it from equation 9:

LJ(ϕ) =
Φ0

2πIc cosϕ
=

L0

cosϕ
(10)

where L0 = Φ0

2πIc
.

Equation 10 shows that the Josephson inductance LJ non-linearly depends on the phase dif-
ference ϕ. The crucial consequence is that Josephson junctions can be used as a non-linear and
tunable inductances in superconducting circuits. For this reason, Josephson junctions are probably
the most important building blocks for quantum circuits such as tunable resonators, parametric
amplifiers and qubits.

5 Microwave Tunable Resonators

In section 3, we have introduced two resonator configurations, namely the quarter-wave and the
half-wave resonators. In both cases, the resonance frequency fr depends only on the length l of
the resonators, given the parameters L′ and C ′, and the boundary conditions of the resonators.
For example, the resonance frequency of the fundamental mode of a quarter-wave resonator is:

f0 =
vph
λ

=
1

4l
√
L′C ′

(11)

where vph = 1/
√
L′C ′ is the phase velocity of the electromagnetic wave travelling in the resonator

and λ is its wavelength.

Can we build a tunable resonator, i.e. a resonator whose resonance frequency is not fixed by
the circuit geometry and can be tuned by means of an external parameters?

Looking at equation 11, we observe that to tune the resonance frequency we need to vary in a
controlled way wither the length or the total inductance of the resonator or the total capacitance
of the resonator.

In section 4, we have shown how a Josephson junction behaves as a tunable inductance, which
therefore can be exploited to realise a tunable resonator. In the most common implementation of
Josephson-junction based tunable resonators, a special circuit configuration including two Joseph-
son junctions is used, called dc SQUID (Superconducting Quantum Interference Device).

A dc SQUID consist of a superconducting loop interrupted by two Josephson junctions, as shown
in figure 9. The working principle of a SQUID is based on the dc Josephson effect introduced in
section 4.

The detailed discussion of the physics of SQUID devices is beyond the scope of these lectures. A
complete treatment can be found in the The SQUID Handbook (see section Suggested Textbooks
and Reviews). For our purposes, we can treat a SQUID as a circuit component with an inductance
LSQ which periodically varies with the total magnetic flux Φtot threading the SQUID loop:
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Figure 9: A schematic of a SQUID device, consisting of a superconducting loop with two Josephson
junction in parallel. The SQUID response is periodically proportional to the magnetic flux threading the
loop.

LSQ(Φ) =
LJ

2 cos (πΦtot/Φ0)
(12)

where LJ is the inductance of the single Josephson junction, Φtot is the total flux through the
SQUID loop and Φ0 is the flux quantum. Note two important details related to equation 12:
1) We neglect the geometric inductance of the SQUID loop.
2) The total flux Φtot includes the externally applied magnetic flux Φext as well as the flux induced
by other currents biasing the SQUID, Φb, and smaller contributions from screening currents in the
loop, Φscr. We can write the implicit relation: Φtot = Φext + Φb(I) + Φscr(Φtot). In the following
we assume negligible bias currents and screening currents, so that Φtot ≈ Φext.

We can now integrate a SQUID in a quarter-wave resonator geometry, as shown in figure 10.
The total inductance of the resonator circuit will then depend also on the SQUID inductance LSQ

and therefore a change in the external magnetic flux Φext will affect the resonance frequency fr:

fr(Φext) = f0

(
1 +

LSQ(Φext)

Lr

)
(13)

where f0 is the resonance frequency of the bare resonator, i.e. without the SQUID termination
to ground, and Lr is the total inductance of the bare resonator, which is called lumped-element
inductance and can be related to the distributed inductance L′. Note that also here we neglect
the geometrical inductance of the SQUID loop.

In summary, using a dc SQUID as a tunable non-linear inductor integrated in a coplanare
waveguide resonator, we have built a tunable resonator, whose resonance frequency can be exter-
nally controlled by tuning the magnetic flux threading the SQUID loop.

Figure 10 shows the circuit diagram and a microscope image of a tunable microwave resonator
microfabricated in the FBK cleanroom facilities. A quarter-wave coplanar waveguide resonator is
patterned from a 80 nm thick aluminium film and the two Josephson junctions forming the SQUID
are visible. Next to the SQUID, a modulation line is present. By flowing current through the
modulation line, we can induce a magnetic field in the SQUID loop, according to Biot–Savart law.
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Figure 10: Circuit diagram and microscope image of a tunable resonator developed at FBK. The basic
components of the spectroscopy apparatus used for the characterisation are also shown.

To characterise the tunable resonator, we cool the device down to ∼10mK temperature and
we connected to an RF spectroscopy apparatus. At room temperature, we use a VNA to generate
an input signal at port 1. The signal is routed from room temperature to the cryogenic stage,
where the device is placed, and it is fed to the resonator through a circulator2. The microwave
signal reflected back by the tunable resonator, travels back through the circulator and is amplified
on its way towards the room temperature stage. Finally, the output signal is connected to port 2
of the VNA. In this way, the response of the resonator is measured as a function of frequency, as
previously shown in figure 7a.

This measurement is repeated while varying the dc current flowing through the modulation line,
therefore effectively changing the magnetic flux through the SQUID loop. For each measurement,
the resonance frequency fr = ωr/2π is extracted and can be plotted as a function of the magnetic
flux, as shown in figure 11.

Figure 11: Experimental measurement of the modulation of the tunable resonator shown in figure 10.
The resonance frequency is plotted as a function of the applied magnetic flux.

2A circulator is a microwave component with three ports, which allows transmission from port 1 to port 2, from
port 2 to port 3 and from port 3 to port 1, in a circular fashion, while isolating the other directions. The circulator
is shown in the schematic of figure 10.
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6 Josephson Parametric Amplifiers

Amplifiers act as bridges between the quantum circuit sitting at cryogenic temperatures and the
classic apparatus in the laboratory at room temperature that we intend to use for the read-out.
In 1982, C.M.Caves was writing: “The last essential quantum mechanical stage of a measuring
apparatus is a high-gain amplifier; it produces an output that we can lay our grubby, classical
hands on.”.

When measuring a superconducting quantum circuit, we need to route the weak microwave
output signal of the device from the cryogenic stage to the room temperature electronics and we
need to amplify it. Typically, we use several amplification stages in cascade, as shown in the sketch
of figure 12, and each amplifier inevitably adds noise.

Figure 12: Simple sketch of a cascade of amplifiers in series, each one characterised by a gain Gi.

The total system noise temperature Tsys of a chain of M amplifiers in series is given by the Friis
formula:

Tsys =

M∑
i=1

TN,i∏i−1
j=1Gj

= TN,1 +
TN,2

G1
+

TN,3

G1G2
+ ... (14)

where the Gi is the gain of the i-th amplifier and TN,i is its noise temperature.

If the first amplifier has a large gain, i.e. G1 ≫ 1, the total system noise temperature is
dominated be the noise performance of the first amplifier. Therefore, in order to maximise the
signal-to-noise ratio, we need a first-stage-amplifier with a sufficiently high gain and as low noise as
possible. Moreover, the insertion loss between the superconducting circuit and the amplifiers needs
to be minimised. Thus, the amplifier is typically co-located with the superconducting circuit under
test at the lowest temperature stage of the cryogenic apparatus, reducing as much as possible the
number of contacts and components between the signal source and the amplifier.

Standard low-noise cryogenic amplifiers (e.g. HEMTs - High Electron Mobility Transistors)
feature noise levels of a few Kelvin. Moreover, they dissipate too high power, if compared to the
available cooling power in the cryogenic system. Ideally, we would like to use an amplifier with
minimal power dissipation and with the lowest possible added noise, i.e. at the quantum noise
limit.

Quantum noise limit

Any amplifier intrinsically adds noise. For any phase-preserving amplification process with gain
G, the added noise can be expressed in terms of noise photons nN:

nN ≥ |1− 1/G|
2

. (15)

If the gain is small, G ≈ 1, no noise is added. If the gain is large, G ≫ 1, the number of added
noise photons approaches 1/2, the so called standard quantum limit (SQL). We often refer to this
limit as half-photon of noise. The fundamental origin of such noise limit can be traced back to
the manifestation of Heisenberg uncertainty principle. In this picture, the fluctuations in the two-
quadrature-plane (I/Q-plane) must be limited to a minimal area corresponding to the zero-point
fluctuations energy hf/2.
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We can translate a noise photon number nN into a noise temperature TN in units of Kelvin:
TN = nN · hf/kB. For example, a quantum-limited amplifier operating at 5GHz has a noise
temperature TN = 1/2 · h · (5 GHz)/kB = 0.12K.

Superconducting parametric amplifier can feature minimal noise, reaching the standard quan-
tum limit, and can operate with very small power dissipation, making them particularly interesting
for cryogenic quantum-limited read-out of superconducting devices, such as qubits.

Parametric amplification

Any non-linear system where we can periodically modulate a parameter of the system (e.g. a circuit
reactance), converting energy between conjugate field variables of the system (e.g. voltage and
current), can produce a parametric behaviour. The simplest example of parametric amplification
is a child on a swing, as shown in figure 13(left), where the potential is at the first order quadratic
in displacement. The child is squatting at twice the frequency of the swing oscillations, therefore
modulating the position of the centre of mass and achieving parametric gain in the oscillation
amplitude. The parametric periodic modulation is often called pumping and the condition for
parametric gain is fp ≈ 2f0, where fp is the pumping frequency and f0 is the natural oscillator
frequency.

Another curious example of parametric amplification is the famous Botafumeiro, a thurible
used at the Santiago de Compostela Cathedral, in Spain. The Botafumeiro is suspended 20m
from a pulley mechanism under the dome on the roof of the church and it swings in a 65m arc.
The maximum amplitude of the oscillation is reached by parametric amplification, modulating
the length of the suspension rope at twice the oscillation frequency. This modulation (pumping)
effectively injects energy into the system, producing gain in the oscillation amplitude. Enjoy the
video here: https://www.youtube.com/watch?v=beP8N9X0nyw.

We can implement parametric amplification in a non-linear LC resonator circuit, like the one
sketched in figure 13(right), by pumping the inductance or the capacitance of the system. The
tunable resonator discussed in section 5 is exactly the circuit we need for this, since its energy is at
first order quadratic in the magnetic flux in the inductor and we can pump the SQUID inductance
by modulating the magnetic flux through the SQUID.

Figure 13: Two analogous examples of parametric amplification: the child on the swing, amplifying the
oscillation amplitude by pumping the moment of inertia (left) and an LC resonator circuit, where the
signal ωs is amplified by pumping the magnetic flux in the inductor L(t) or the electrical charge in the
capacitor C(t).

Flux-driven JPA

A flux-driven Josephson Parametric Amplifier (JPA) consists of a quarter-wave coplanar waveg-
uide resonator terminated to ground by a dc SQUID, as shown in figure 10 and in figure 15(a). As
previously discussed, the dc SQUID acts as a flux-tunable non-linear inductance LSQ(Φext) which
affects the resonance frequency of the circuit fr = 2πωr, as described by equation 13. We have
already seen in section 5 how this circuit functions as a tunable microwave resonator. We can also
operate the same circuit as a flux-driven JPA, inducing parametric amplification by periodically
modulating (pumping) the inductance LSQ. The parametric modulation (pump) must be at a
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frequency ωp ≈ 2ωr, i.e. close to twice the resonance frequency of the circuit.

By pumping we induce a three-wave mixing process, where an input signal tone is amplified if
its frequency ωs is close to the resonance frequency of the circuit, meaning close to half the pump
frequency ωp. This condition can be written as:

ωs = ωp/2 + δω (16)

where δω is the detuning from the resonance frequency. Because of energy conservation, another
tone called idler is created at a frequency

ωi = ωp/2− δω . (17)

Therefore, the condition for a three-wave mixing process can be written as:

ωp = ωs + ωi . (18)

We can visualise the three-wave mixing process as the conversion of one pump photon into one
signal photon and one idler photon, as shown in figure 14a. In this picture, is it clear how the
generation of the idler photon is required by energy conservation. Thanks to this conversion from
pump photons to signal photons, we effectively achieve an amplification of the signal.

The detuning δω should be sufficiently small, such that the signal frequency ωs falls within the
line-width of the resonance of the circuit, as shown in figure 14b. If the detuning is zero, δω = 0,
i.e. if ωs = ωr, signal and idler will be at the same frequency, ωs = ωi = ωp/2. This case is called
degenerate parametric amplification.

(a) Three-
wave mixing
process. (b) Signal, idler and pump frequencies in a JPA.

Figure 14: Three-wave mixing process in a flux-driven JPA and distribution of the relevant frequencies,
namely signal, idler and pump. The pump frequency is at twice the resonance frequency of the JPA ω0.
The green curve shows the shape of the resonance of the circuit.

JPA operation The operation of a flux-driven JPA is schematically represented in figure 15.
After having choosen a flux working point, as shown in figure 15(b), a strong pump signal at
frequency 2f0, where f0 is the resonance frequency if the circuit, is injected into the pump port,
modulating the flux through the dc SQUID. An input signal with amplitude A at frequency f0− f
is injected in the resonator circuit and read out in reflection. As a result of the parametric process,
the input signal is amplified with a gain G and an idler mode appears at frequency f0 + f .

Degenerate amplification and squeezing In the special case of degenerate amplification, sig-
nal and idler are at the same frequency and therefore they can interfere constructively or destruc-
tively, depending on their phases. Thus, the gain of the amplification process becomes sensitive
to the relative phase between signal and idler modes. By tuning the phase, deamplification or
amplification can be achieved. In the case of deamplification, the quadrature fluctuations can be
squeezed below those of the vacuum. It is therefore possible to overcome the standard quantum
limit, but only on one quadrature of the signal.
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Figure 15: (a) Circuit diagram of a flux-driven JPA. (b) Dependence of the resonant frequency on the
flux. The operation point is marked in blue. (c) Schematic of the operating principle of the JPA. Figure
from L. Zhong et al., Squeezing with a flux-driven Josephson parametric amplifier New J. Phys. 15 125013,
2013.

In conclusion, a flux-driven JPA exploits three-wave mixing to achieve parametric amplification
by pumping the SQUID inductance. JPAs have demonstrated amplification at the quantum noise
limit with high gain, G ≥ 20 dB, and for this reason they are often used as first amplifiers in
cryogenic set-ups for the read-out of superconducting quantum circuits. The main limitation of
JPAs is their small amplification bandwidth, which is typically limited to a few MHz.

To obtain larger amplification bandwidth, which is crucial for example to read-out arrays of
qubits or arrays of cryogenic detectors, another category of superconducting parametric amplifiers
is currently developed, namely the Travelling Wave Parametric Amplifiers (TWPAs). The funda-
mental difference between a JPA and a TWPAs is that the former is a resonant circuit while the
latter is a transmission line. TWPAs have demonstrated near quantum-limited amplification with
bandwidths up to several GHz. The discussion of TWPAs is however beyond the scope of these
lectures. Both JPAs and TWPAs can be used as amplifiers as well as squeezers, for the generation
of entangled microwave photons. The physics of squeezed states and entanglement generation is
of high interest for quantum optics experiments in the microwave regime.
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7 Superconducting Qubits

The non-linearity offered by Josephson junctions integrated in microwave circuits is not only useful
to build parametric amplifiers, as described in section 6, but also to realise superconducting qubits.
A qubit is by definition a two-level system displaying a quantum mechanical behaviour. The two
energy levels are used as a basis for computation, exploiting the fact that the qubit can be in a
coherent superposition of multiple states.

As any other quantum mechanical system, the time evolution of a qubit is governed by the
Schrödinger equation:

Ĥ |ψ(t)⟩ = ih̄
∂

∂t
|ψ(t)⟩ (19)

where |ψ(t)⟩ is the state of the quantum system at time t and Ĥ is the Hamiltonian quantum
operator. Determining the Hamiltonian of the system is required to derive its dynamics.

Quantum harmonic oscillator

To understand the physics of superconducting qubits, it is natural to start from the classical
description of the simplest quantum circuit we can think of, namely a linear harmonic oscillator.
We can implement such system with an LC resonator, as shown in figure 16a, where the energy of
the system is oscillating between the magnetic energy in the inductor L and the electrical energy
in the capacitor C.

The classical Hamiltonian of the LC resonator is given by:

H =
Q2

2C
+

Φ2

2L
=

1

2
CV 2 +

1

2
LI2 (20)

where Q and Φ are the generalised circuit coordinates, charge and flux, respectively.
By definition, the flux Φ is the integral of the voltage V : Φ(t) =

∫
V (t′)dt′ and the charge Q

is the integral of the current I: Q(t) =
∫
I(t′)dt′. We also should remember that V = LdI/dt and

I = CdV/dt.
We can interpret the electrical energy as the kinetic energy and the magnetic energy as the

potential energy of the oscillator, in analogy with a mechanical oscillator. In this analogy, the
usual conjugate variables to describe a mechanical oscillators, position x and momentum p, are
mapped to charge Q and flux Φ. The Hamiltonian in equation 24 is analogous to that of mechanical
harmonic oscillator, with mass m = C and momentum p. Expressed in position x and momentum
p, the Hamiltonian reads H = p2/2m+mω2x2/2.

To migrate from a classical to a quantum description, we introduce the quantum operators Φ̂
and Q̂ which satisfy the commutation relation [Φ̂, Q̂] = ih̄. The operators hats are omitted in the
following for simplicity.

We define the reduced flux ϕ := 2πΦ/Φ0 and the reduced charge n := Q/2e, which obey the
commutation relation [ϕ, n] = i. The quantum-mechanical Hamiltonian can then be derived:

H = 4ECn
2 +

1

2
ELϕ

2 (21)

where EC = e2/(2C) is the charging energy necessary to add a Cooper pair to the capacitor island
and EL = (ϕ0/2π)

2/L is the inductive energy. The quantum operator n corresponds to the excess
number of Cooper pairs on the island in the circuit shown in figure 16a. The reduced flux ϕ cor-
responds to the phase across the inductor.

In a more compact form, we can write the Hamiltonian of the quantum harmonic oscillator as:

H = h̄ω

(
a†a+

1

2

)
(22)

where a† and a are the creation and annihilation operators of a single excitation of the resonator.
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Non-linearity and anharmonicity The quantum harmonic oscillator features quantised and
equidistant energy levels, as shown in figure 16b. However, such system cannot be used as a qubit.
The main limitation is in fact the difficulty in defining and addressing a computation subspace
consisting of only two energy states. Typically the ground state |0⟩ and the first excited state |1⟩
are exploited. The transition between these two energy levels should be driven without exciting
other levels. Due to the quadratic potential of the quantum harmonic oscillator with equidistant
energy levels, the two levels belonging to the computation subspace cannot be addressed indepen-
dently from the others. To lift this degeneracy, a non-linear element needs to be integrated in the
circuit.

Figure 16: (a) Circuit for a parallel LC oscillator (quantum harmonic oscillator, QHO). (b) Energy
potential for the QHO, where energy levels are equidistantly spaced. (c) Qubit circuit with a non-linear
inductance given by the Josephson junction. (d) Quadratic energy potential (dashed red) reshaped to a
sinusoidal potential (solid blue) by the non-linearity of the Josephson junctions, yielding to non-equidistant
energy levels. Figure from P. Krantz at al., A quantum engineer’s guide to superconducting qubits, Appl.
Phys. Rev. 6(2): 021318, 2019.

The charge qubit and the transmon qubit

By introducing a Josephson junction, which acts as a non-linear inductance, as discussed in section
4, we are able to deform the potential and make the oscillator anharmonic, as shown in figure 16d.
The parabolic (i.e. quadratic) potential of the harmonic oscillator becomes cosinusoidal. This
results in non-equidistant energy levels, allowing for the needed selectivity of individual transitions
between the levels, without involving higher non-computational states.

A high anharmonicity, i.e. a high difference in the transition frequencies between levels, 0 → 1,
1 → 2, ..., is preferable to build superconducting qubits. Practically, the amount of anharmonicity
sets a limit on how short the pulses used to control the qubit can be.

We replace the linear inductor in the harmonic oscillator (figure 16a) with a Josephson junction,
i.e. a non-linear inductance (figure 16b). The resulting anharmonic oscillator can be used as a qubit
and its Hamiltonian becomes:

H = 4ECn
2 − EJ cosϕ (23)
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where EC = e2/(Cs+CJ) with Cs the shunt capacitor and CJ the self-capacitance of the Josephson
junction, and EJ = IcΦ0/2π.
We can explicit a term ng = Qg/2e representing a possible offset charge due to an external electric
field bias, such that equation 23 becomes:

H = 4EC(n− ng)
2 − EJ cosϕ . (24)

Such external electric field can arise from spurious unwanted processes in the qubit environment
or from an intentional external gate voltage.

The dynamics of the system is governed by the dominant energy in the Hamiltonian of equation
24. In particular, the relevant parameter is given by EJ/EC, which is the ratio between the
Josephson energy EJ and the charge energy EC.

The charge qubit If the charging energy EC dominates, i.e. EJ/EC ≤ 1, the eigenstates of the
Hamiltonian are approximately matching the eigenstates of the charge operator n. This config-
uration is often referred as charge qubit. In this situation, the qubit becomes highly sensitive to
charge noise. In other words, a small change in gate charge ng has a large impact on the transition
frequencies of the energy levels, as shown in figure 17. We can refer to this condition as large charge
dispersion. As a result, unavoidable charge fluctuations in the environment lead to fluctuations in
the qubit transition frequency and to dephasing.

The transmon qubit To lower the charge dispersion, we can increase the ratio EJ/EC to
values in the order of 50-80, as shown in figure 17. In this way, the Josephson energy dominates
and the the charge degree of freedom becomes highly delocalised. The regime with EJ/EC ≫ 1
is called transmon regime. In this regime, the charge dispersion decreases exponentially with
EJ/EC. The price to pay is a reduced anharmonicity α = E12 −E01. However, the anharmonicity
is weakly decreasing with EJ/EC, following the dependance α ∼ (EJ/EC)

−1/2. Therefore, the
charge dispersion is reduced much faster than the anharmonicty by increasing EJ/EC.

The transmon qubit is one of the most popular superconducting qubit configurations, since the
reduced charge dispersion allows for longer coherence times, even if with a reduced anharmonicity.
To access the transmon regime, we can decrease EC in order to increase the ratio EJ/EC. To achieve
this, in the typical transmon designs, the Josephson junction is shunted with a large capacitor,
Cs ≫ CJ.

Figure 17: Frequency difference of the first three energy levels of the a charge qubit in different regimes
as a function of the offset charge. Figure from A. Blais et al., Circuit quantum electrodynamics, Rev. Mod.
Phys. 93, 025005, 2021.
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Flux-tunable transmon In order to add tunability to the transmon circuit shown in figure
16(c), the single Josephson junction can be replaced by a SQUID, i.e. by two Josephson junctions
in parallel. In this way, the transmon frequency can be tuned by changing the flux Φext threading
the SQUID loop. Here, Φext is the external flux applied to the SQUID, which corresponds to
the total flux threading the SQUID loop in the approximation of negligible flux induced by other
effects. The transmon Hamiltonian for a flux-tunable transmon is:

H = 4ECn
2 − EJ1 cosϕ1 − EJ2 cosϕ2 (25)

where EJi is the Josephson energy of the i-th junction and ϕi is the phase difference across the
i-th junction. We neglect the geometric inductance of the SQUID loop.

Because of flux quantisation, we have that ϕ1 − ϕ2 = 2πΦext/Φ0(mod 2π). We can define the
average phase difference ϕ = (ϕ1 + ϕ2)/2 and rewrite the Hamiltonian as:

H = 4ECn
2 − EJ(Φext) cos (ϕ− ϕ0) (26)

where

EJ(Φext) = (EJ1 + EJ2) cos

(
πΦext

Φ0

)√
1 + ϕ20 . (27)

Here, ϕ0 = d tan(πΦext/Φ0) represents an effective phase due to the external flux and d = (EJ1 −
EJ2)/(EJ1 +EJ2) is the asymmetry between the two Josephson junctions forming the SQUID. For
a time-independent flux, the phase ϕ0 can be neglected and equation 28 reduces to:

EJ(Φext) = (EJ1 + EJ2) cos

(
πΦext

Φ0

)
. (28)

Therefore, in a flux-tunable transmon, we have a Josephson energy EJ(Φext) which can be
tuned with the external applied magnetic flux. This results in a flux-tunable transmon frequency
ωq given by:

ωq(Φext) =
√

8EC|EJ(Φext)| − EC/h̄
3 . (29)

The possibility of tuning the transmon frequency by large values, up to 1GHz, in a fast way,
down to 10 ns, is relevant for example for the implementation of quantum logic gates. However,
this additional degree of freedom can lead to dephasing due to flux noise. Flux-tunable transmons
with asymmetric Josephson junctions, d ̸= 0, feature less tunability and, therefore, suffer less from
flux noise.

Resonator coupling

Transmons are rather large objects, because of their large capacitance and, therefore, they can
naturally be capacitively coupled to microwave resonators. A schematic representation is shown
in figure 18. The electric field of the resonator acts as a gate voltage, taking the place of the offset
charge operator ng: ng → −nr. Note that the choice of sign is arbitrarily.

We can write the Hamiltonian of the combined system, comprising the transmon and the
resonator, as:

H = 4EC(n+ nr)
2 − EJ cosϕ+

∑
m

h̄ωma
†
mam (30)

where nr =
∑

m nm with nm = (Cg/Cm)/2e is the contribution of the offset charge term due to
the mth resonator mode. Cg is the gate capacitance and Cm is the capacitance of the associated
resonator mode. We assume a small gate capacitance Cg.

We can apply the so called single-mode approximation, assuming that the transmon frequency
is much closer to one of the resonator modes than all the other modes. Therefore, we can truncate
the sum in equation 30 to a single term. Under this condition, the Hamiltonian reduces to a single
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oscillator of frequency ωr coupled to a transmon qubit of frequency ωq. The oscillator can always
be represented by a lumped-element LC circuit, even if it consists of a 3D cavity, as shown in
figure 18.

Figure 18: Schematic representation of a qubit (green) coupled to a resonator. The resonator can be a
planar resonator (a), a general lumped-element LC circuit (b) and a 3D cavity (c). Figure from A. Blais
et al., Circuit quantum electrodynamics, Rev. Mod. Phys. 93, 025005, 2021.

The Hamiltonian in the single-mode approximation becomes:

H ≈ h̄ωra
†a+ h̄ωqb

†b− EC

2
b†b†bb− h̄g(b† − b)(a† − a) (31)

where ωr is the frequency of the mode of interest and g is the oscillator-transmon coupling constant,
also called light-matter coupling constant.

In the experimentally relevant situation where |g| ≪ ωr, ωq, meaning that the coupling constant
is much smaller than the frequencies of the systems, the Hamiltonian in equation 31 simplifies to

H ≈ h̄ωra
†a+ h̄ωqb

†b− EC

2
b†b†bb+ h̄g(b†a+ ba†) . (32)

If we restrict the description to the first two levels of the transmon, i.e. the ground state |g⟩
and the first excited state |e⟩, we can define:

σ+ = |e⟩ ⟨g| ; σ− = |g⟩ ⟨e| ; σz = |e⟩ ⟨e| − |g⟩ ⟨g| (33)

and we can replace in equation 31 b† → σ+ and b→ σ−.

In this way, we obtain the well-known Jaynes-Cummings Hamiltonian:

HJC = h̄ωra
†a+

h̄ωq

2
σz + h̄g(a†σ− + aσ+) . (34)

The Jaynes-Cummings Hamiltonian is widely used in circuit QED and cavity QED. It models
the interaction of a two-level atom with a quantised mode of an optical cavity. In our case,
the transmon is an artifical atom and it interacts with the mode of the microwave resonator.
In particular, the last term of equation 34 describes the coherent exchange of a single quantum
between light and matter, here realized as a microwave photon in the resonator or an excitation of
the artificial atom.
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