

Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems

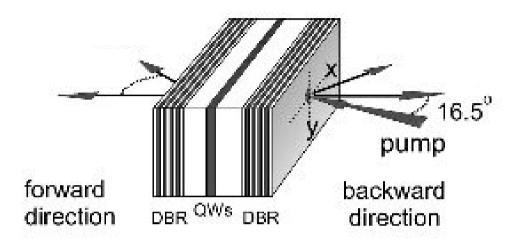
<u>Iacopo Carusotto</u>

BEC CNR-INFM and Università di Trento, Italy

Michiel Wouters
EPFL, Lausanne, Switzerland

Cristiano Ciuti MPQ, Univ. Paris VII

Introduction: What is a polariton?



Cavity photon

- DBR: stack $\lambda/4$ layers (e.g. GaAs/AlAs)
- Cavity layer → confined photonic mode
- Cavity mode delocalized along 2D plane

$$\omega_C(\mathbf{k}) = \omega_C^0 \sqrt{1 + \mathbf{k}^2 / k_z^2}$$

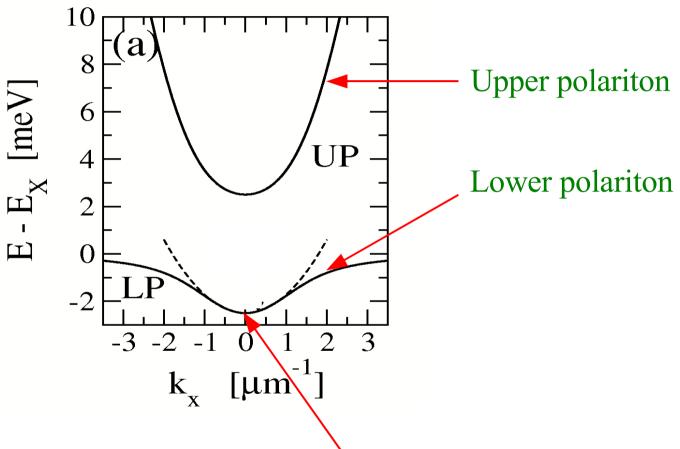
Quantum well exciton

- e and h confined in QW layer (e.g. InGaAs)
- e-h pair: sort of H atom → exciton
- Excitons bosons if $n_{exc} a_{Bohr}^2 \ll 1$
- Flat exciton dispersion $\omega_{x}(\mathbf{k}) \approx \omega_{x}$

Radiative coupling between excitonic transition and cavity photon at same in-plane k Eigenmodes: bosonic superpositions of exciton and photon, called **polaritons**

Why polariton BEC?

polariton dispersion in k-space

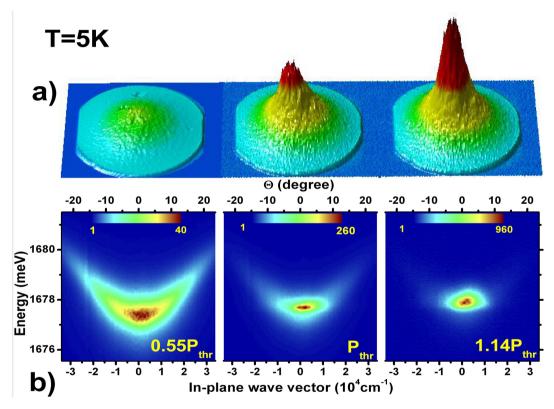


Small polariton mass $m_{pol} \approx 10^{-4} m_e$:

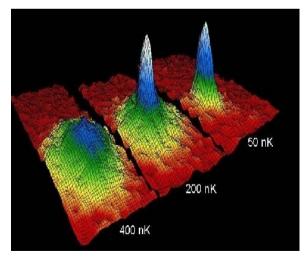
- \rightarrow high $T_{BEC} \approx 30 \text{ K}$ for typical densities
- \rightarrow for comparison, $m_{Rb} = 1.7 \cdot 10^5 \text{ m}_e$, $T_{BEC} \approx 10 \text{ nK}$

Many experimental signatures of polariton BEC...

1 – Narrowing of the momentum distribution

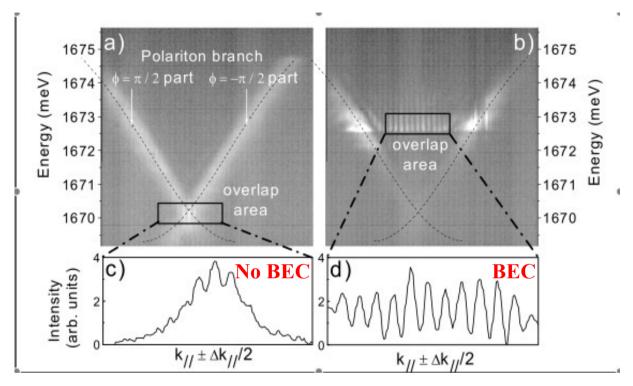


Bose-Einstein condensate of exciton polaritons Kasprzak et al., Nature **443**, 409 (2006)

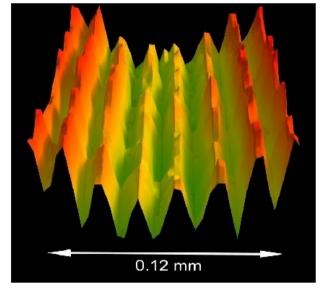


The first atomic BEC M. H. Anderson et al. Science **269**, 198 (1995)

2 – First order coherence: Young two-slit experiment

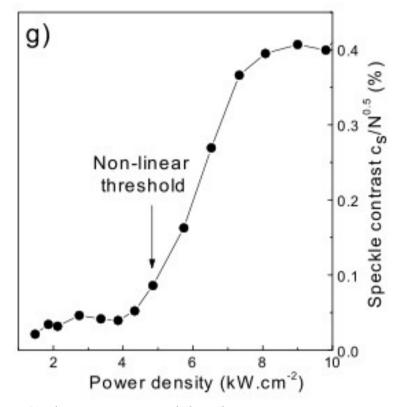


Interference pattern of emitted light from a polariton BEC M. Richard et al., PRL **94**, 187401 (2005)

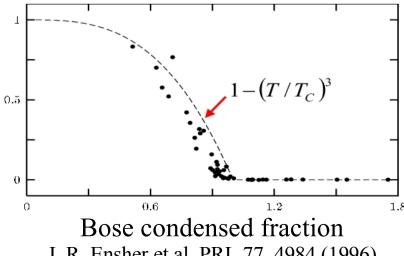


Interference pattern of two expanding atomic BECs M. R. Andrews, Science **275**, 637 (1995)

3 – Threshold behaviour

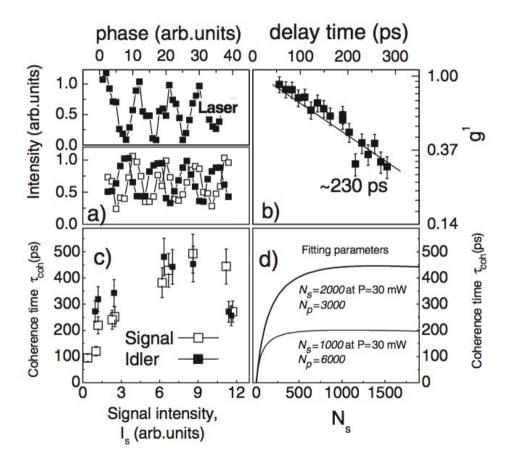


Coherence suddenly appears at threshold M. Richard et al., PRL 94, 187401 (2005)



J. R. Ensher et al. PRL 77, 4984 (1996)

4 – Long coherence time

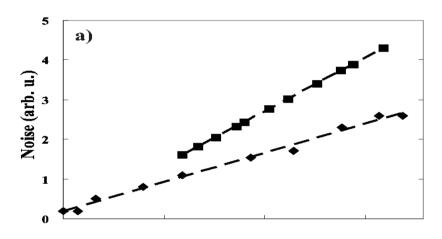


D. N. Krizhanovskii, D. Sanvitto, A. P. Love, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, PRL **97**, 097402 (2006)

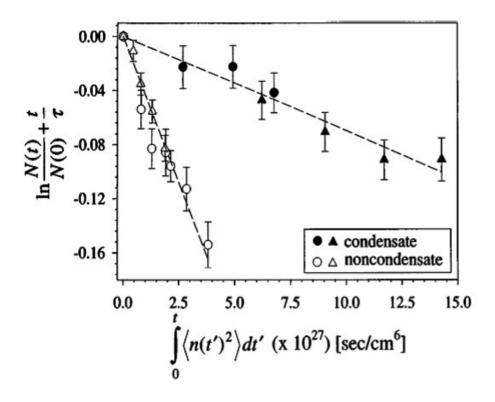
Condensate emission:

- phase coherent for long times
- what determines decoherence?
- role of interactions?

5 – Noise reduction in the condensed phase



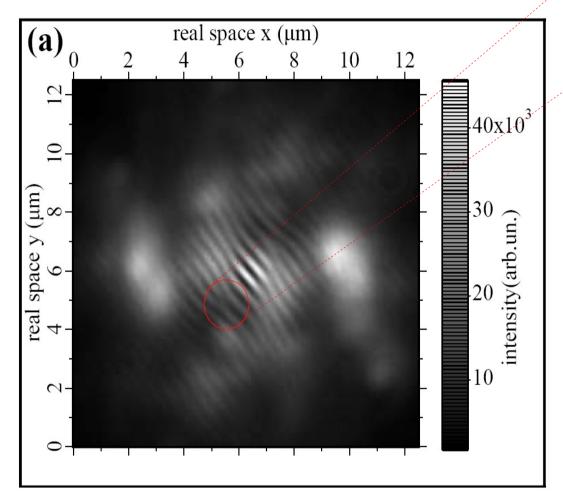
Razor-blade experiment to mesure g⁽²⁾ A. Baas et al., PRL **96**, 176401 (2006)



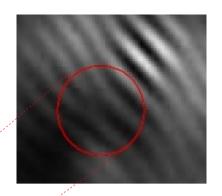
Suppressed density fluctuations by 3!

→ reduced 3-body recombination rate
E. A. Burt et al. PRL 79. 337 (1997)

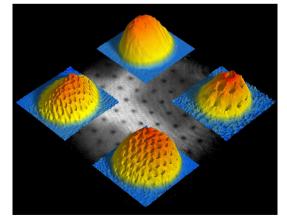
6 – Quantized vortices



K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, IC, R. André, Le Si Dang, B. Deveaud-Pledran, *Quantised Vortices in an Exciton Polariton Fluid*, preprint arXiv/0801.1916.

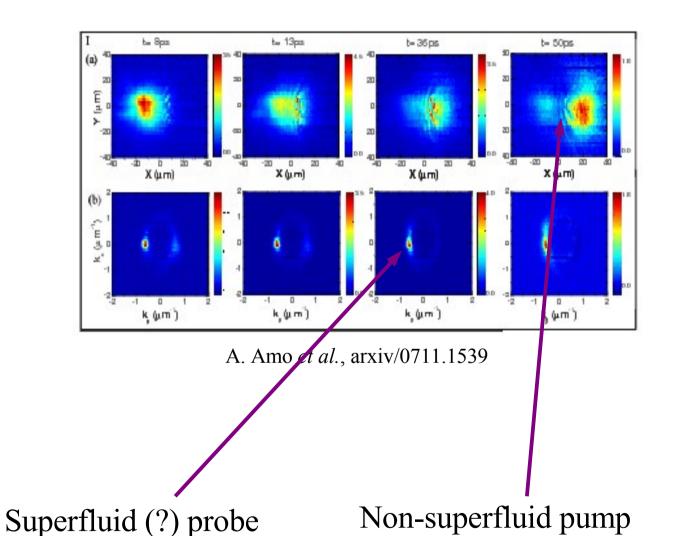


- dislocation in interference pattern
- appear spontaneously without need for stirring
- pinned to defects
- T=0 effect



Vortex lattice density profile in atomic BEC Abo-Shaeer *et al.* Science **292**, 476 (2001)

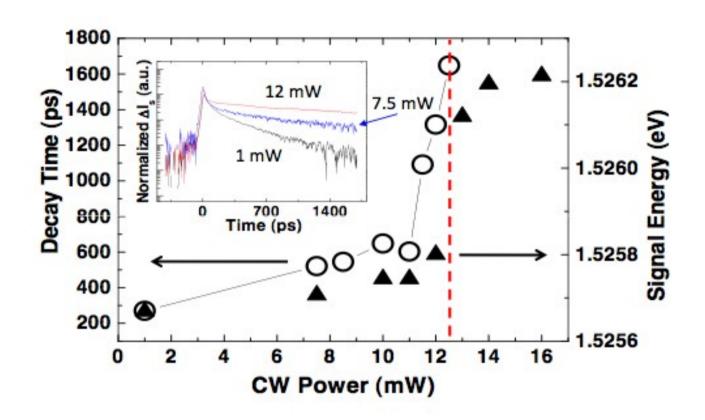
7 – Challenging superfluidity effects



Atomic BEC against defect IC, S. X. Hu, L. A. Collins, A. Smerzi, PRL 97, 260403 (2006) (expt. data from JILA)

LULLI 1

8 – Critical slowing down

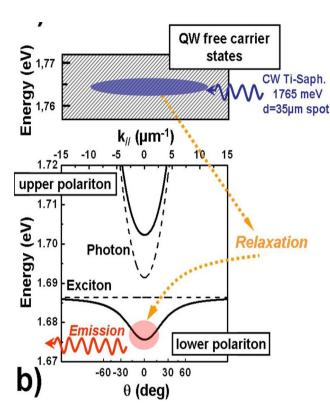


Decay time of response to probe pulse:

- diverges at BEC threshold
- remains high above threshold, possible signature of BEC Goldstone mode

...and also a new feature: non-equilibrium BEC

- Optical injection
- Relaxation: polariton-polariton and polariton-phonon scattering
- Stimulation of scattering to lowest states
- Losses: particle number NOT conserved
- NO thermodynamical equilibrium
- Steady-state determined by dynamical balance of driving and dissipation



(Figure from Kasprzak et al., Nature 2006)

- Standard concepts of equilibrium statistical mechanics are not applicable
- Physics may be strongly different from usual equilibrium BEC

Some questions that naturally arise...

- What new physics can be learnt from polaritons that was not possible with "classical" systems such as liquid Helium and ultracold atoms?
- Easier diagnostics via coherence properties of emitted light
- What more in polariton BEC than standard lasing operation? strong polariton interactions, significant quantum fluctuations...
- Can it lead to completely new states of matter?
 e.g., non-equilibrium strongly correlated gases...
- What are the consequences on applications to optoelectronic devices?

Today: three selected problems:

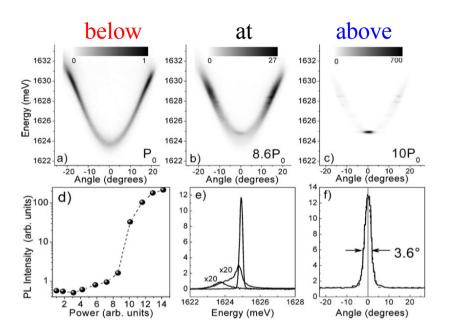
- 1 the condensate shape
- 2 elementary excitations and superfluidity properties
- 3 effect of fluctuations in reduced dimensionality

1 – the condensate shape

Some intriguing experimental data

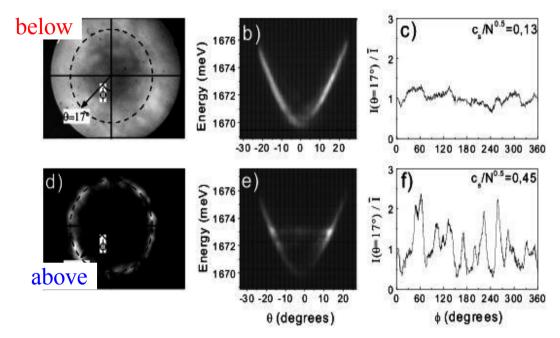
wide pump spot: 20 µm

M. Richard et al., PRB 72, 201301 (2005)



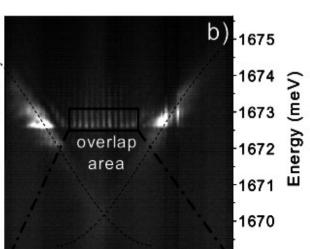
small pump spot: 3 µm

M. Richard et al., PRL 94, 187401 (2005)

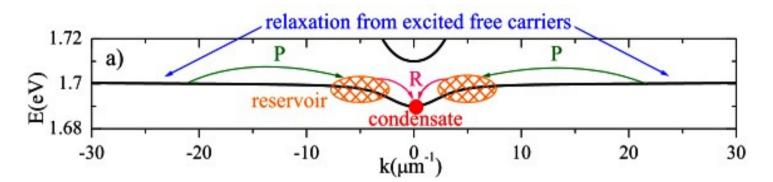


Experimental observations:

- condensate formation under non-resonant pump
- shape dramatically depends on pump spot size
- condensate fully coherent and not fragmented



A generalized GPE for non-resonantly pumped BECs



• Condensate: mean-field approx., GPE with losses / amplification

$$i\frac{\partial}{\partial t}\psi = \left[-\frac{\hbar^2 \nabla^2}{2m_{LP}} - i\gamma/2 + \frac{i}{2}R(n_B) + g|\psi|^2 + 2\tilde{g}n_B \right]\psi$$

macroscopic wavefunction $\psi(x)$, loss rate γ , amplification $R(n_{_{\rm R}})$

• Incoherent reservoir : rate equation for density $n_{_{\rm R}}(x)$

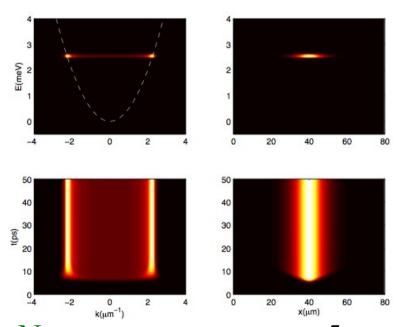
$$\frac{\partial}{\partial t} n_B = P - \gamma_B \bar{n}_B - R(n_B) |\psi(x)|^2 + \frac{D}{2} \nabla^2 n_B$$

pumping rate P, spatial diffusion D, thermalization rate γ_{R}

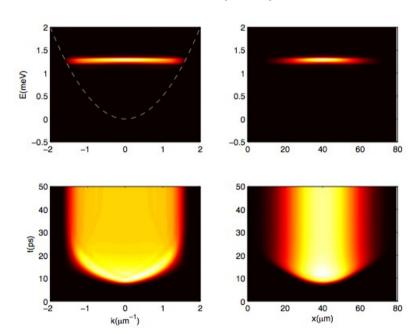
Fast reservoir limit: reduces to a Complex-Ginzburg Landau Equation analogous to semiclassical equations of laser

Numerical integration of non-equilibrium GPE

- Equilibrium, harmonic trap: Thomas-Fermi parabolic profile
- Non-equilibrium: dynamics affects shape. Stationary flow possible related work on flow patterns in J. Keeling and N. G. Berloff, PRL **100**, 250401 (2008)



Narrow pump spot: $\sigma = 5\mu m$ Emission on ring at finite k



Wide pump spot: $\sigma = 20 \mu m$ Broad emission centered at k=0

Good agreement with experiments!!

M. Wouters, IC, and C. Ciuti, Spatial and spectral shape of inhomogeneous non-equilibrium exciton-polariton condensates, PRB 77, 115340 (2008)

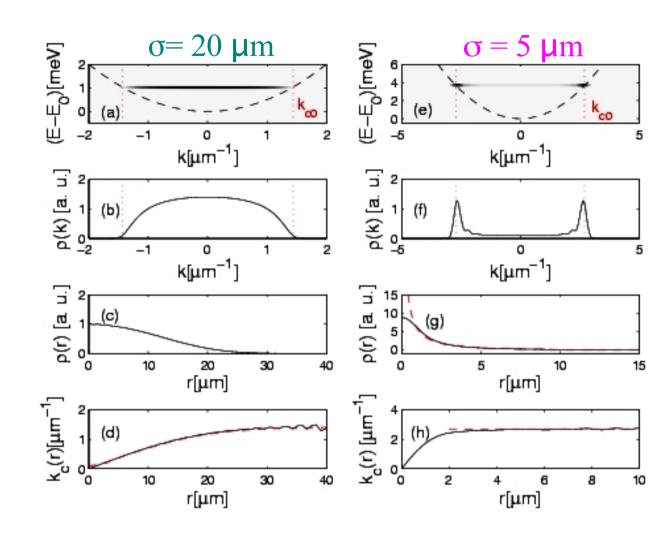
Physical interpretation of condensation at $k\neq 0$

Repulsive interactions

- outward radial acceleration
- energy conservation

$$E=k^2/2m+U_{int}(r)$$

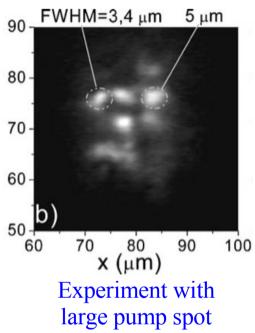
- → radially increasing local flow velocity
- → coherent ballistic flow

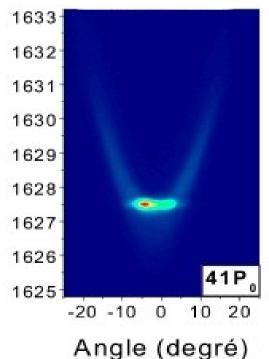


Narrow spot:

- ballistic free flight outside pump spot U_{int}(r)=0
- emission mostly on free particle dispersion

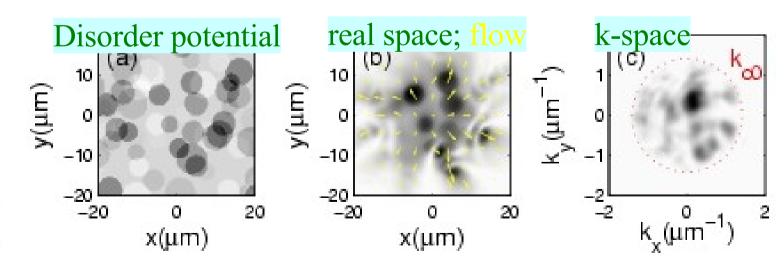
A closer look at experimental data: disorder effects





Steady-state of non-equilibrium GPE

- random disorder potential in GPE
- k-space: speckle modulation over broad profile peak at k≠0: signature of non-equilibrium speckles indicate long-range coherence
- real space: outward flow, modulation roughly follows disorder potential



M. Wouters, IC and C. Ciuti, PRB 77, 115340 (2008)

2 – elementary excitations and superfluidity properties

Bogoliubov modes under non-resonant pumping

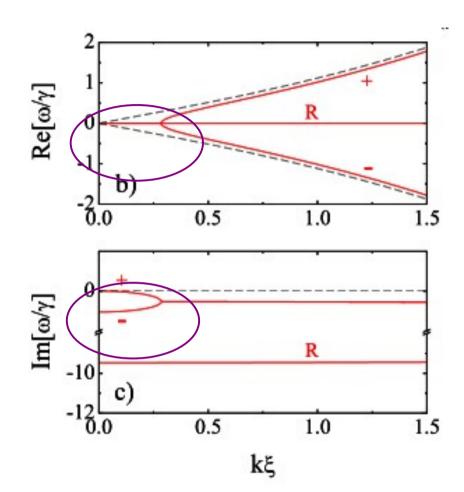
Linearize GPE around steady state

- → Reservoir R mode at $-i \gamma_R$
- → Condensate modes ± at:

$$\omega_{\pm}(k) = -rac{i\Gamma}{2} \pm \sqrt{[\omega_{Bog}(k)]^2 - rac{\Gamma^2}{4}}$$

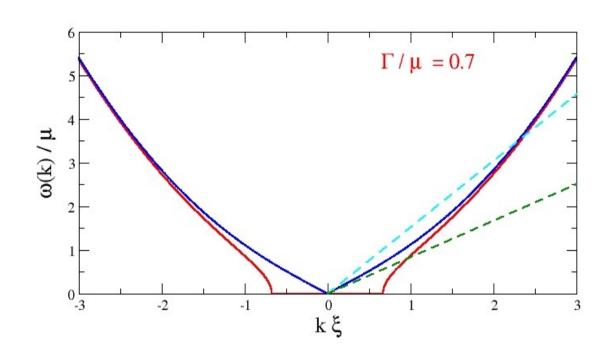
with:

$$\omega_{Bog}(k) = \sqrt{rac{\hbar k^2}{2m_{LP}} \left(rac{\hbar k^2}{2m_{LP}} + 2\,\mu
ight)}.$$



Goldstone mode related to U(1) spontaneous symmetry breaking is diffusive no sound branch, density and phase decoupled

Consequences on superfluidity of polariton BECs



Naif Landau argument:

- Landau critical velocity $v_{L} = \min_{k} [\omega(k) / k] = 0$ for non-equilibrium BEC
- Any moving defect expected to emit phonons

But nature is always richer than expected...

Low v:

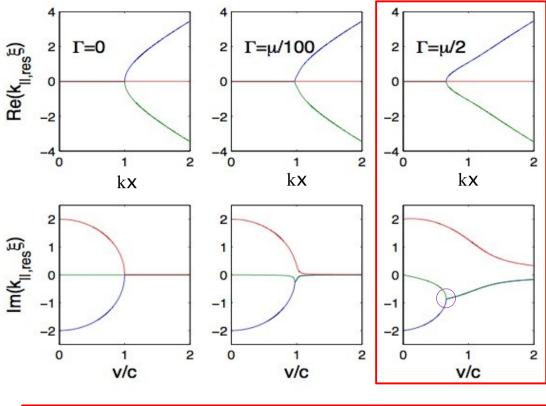
- emitted k_{||} purely imaginary
- no real propagating phonons
- localized perturbation around defect

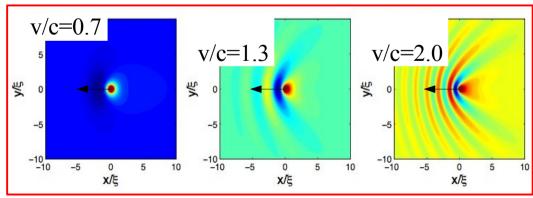
Critical velocity $v_c < c$:

- corresponds to bifurcation point
- decreases with Γ / μ

High v:

- emitted propagating phonons:
 - → Cerenkov cone
 - → parabolic precursors
- spatial damping of Cerenkov cone





M. Wouters and IC, Excitations and superfluidity in non-equilibrium Bose-Einstein condensates of exciton-polaritons, Superlattices and microstructures 43, 524 (2008).

3 – effect of fluctuations in reduced dimensionality

Reduced dimensionality in BEC: equilibrium case

- 3D: BEC transition at finite T_c
- 2D: K-T transition at finite T_{KT} related to vortex pair unbinding :

```
algebraic decay of coherence for T<T<sub>KT</sub> exponential decay of coherence for T>T<sub>KT</sub>
```

- 1D: exponential decay of coherence for T>0
- Hohenberg-Mermin-Wagner theorem sets d_c=2 for U(1) SSB in the thermodynamical limit

Note: Finite-size effects: BEC possible in all dimensionality.

T_c depends on size L: as L⁻¹ in 1D, logarithmically in 2D below T_{KT}

What happens far from equilibrium?

BEC from parametric oscillation in 1D photonic wire

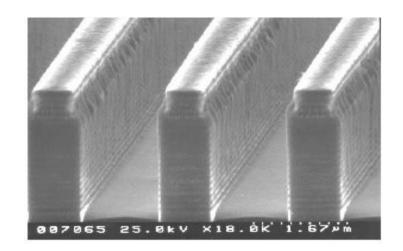
Wigner-QMC results

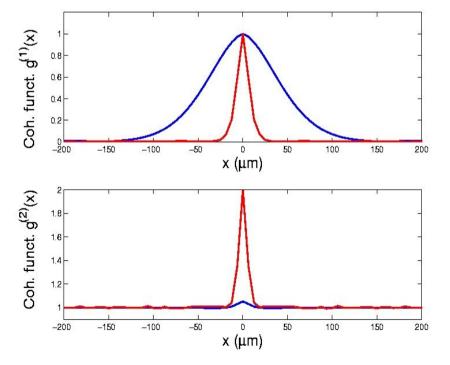
Below threshold:

- incoherent luminescence
- short range coherence

Above threshold:

- intensity fluctuations suppressed
- coherence length much longer but always finite



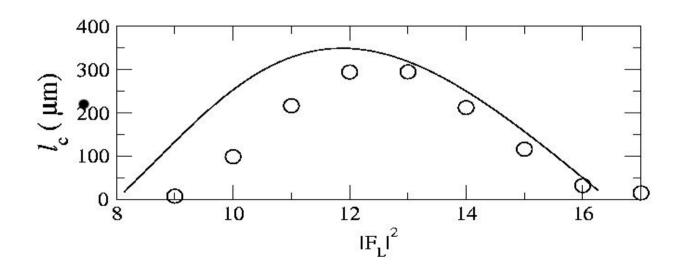


Analytical results

Integration of Wigner-Bogoliubov stochastic equations around pure BEC

Exponential decay of coherence (as at equilibrium).

- → significant polariton-polariton interactions enhance fluctuations
- → damping plays role of temperature
- \rightarrow coherence length l_c experimentally accessible, important for applications!



In conclusion...

Bose-Einstein condensates offer many exciting surprises

Unique non-equilibrium phase transition: interactions vs. driving/dissipation

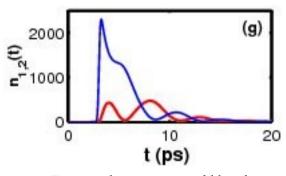
Peculiar condensate shapes in real and momentum space

Fluctuations can be very important, especially in low D

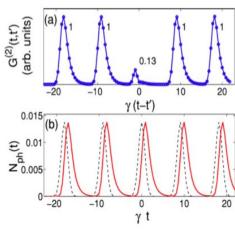
Diffusive Goldstone mode

Superfluidity effects beyond the Landau criterion

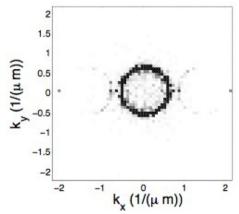
... and much more ...



Josephson oscillations and self-trapping



Single-photon emitter by polariton blockade



Quantum correlated states in BEC collision

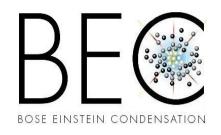
Hic sunt leones...

- Short term (on the way: stay tuned!)
 meaning of polariton superfluidity and links with non-equilibrium BEC
 Wigner-QMC study of condensation under incoherent pump
 non-equilibrium strongly correlated phases in array of coupled polariton dots
- Medium term (hard but feasible)
 quantum hydrodynamics, e.g. dumb holes, Hawking emission
 Polariton Feshbach resonances on bi-exciton states (see Michiel's recent work)
- Long term (science-fiction)

 non-equilibrium statistical mechanics of 2D (K-T?) transition

 non-equilibrium BEC phase transition with disorder, link with random lasing

Thanks to my brave coworkers!!



Michiel Wouters

and the young crew

Simone De Liberato (LPA and Paris 7) Francesco Bariani (BEC-Trento) Arnaud Verger (LPA-ENS now St. Gobain) Simon Pigeon (Paris 7)

Collaborations

Daniele Sanvitto Dario Ballarini Luis Vina (UAM Madrid)

Alberto Amo Alberto Bramati Elizabeth Giacobino (LKB- Paris 6)

Dario Gerace Atac Imamoglu (ETHZ Zurich) Konstantinos Lagoudakis Davide Sarchi Benoit Deveaud (EPFL Lausanne)

Maxime Richard Le Si Dang (Grenoble)

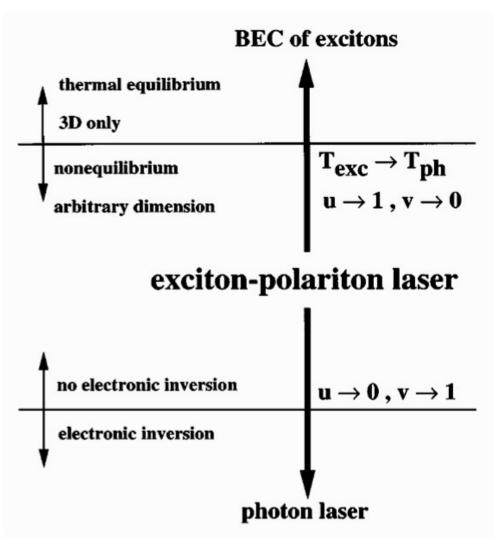
Zeno Gaburro Lorenzo Pavesi (Univ. Trento)

Much more than standard BEC...

Non-equilibrium exciton-polariton BEC

- Non-equilibrium system (not a standard BEC)
- Collisional interactions (not even a standard laser)
- Coherence functions accessible from emitted light

• Differently from standard laser: strong interactions and significant quantum fluctuations

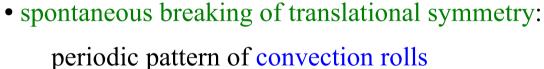


From: A. Imamoglu et al. PRA 53, 4250 (1996)

Phase transitions in non-equilibrium systems as well!

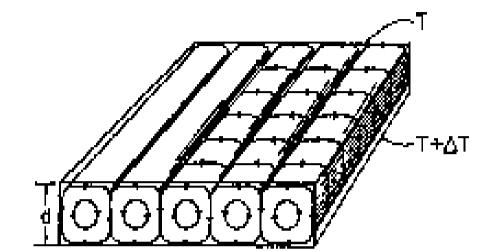
Bénard cells in heat convection:

- dynamical equilibrium between driving (DT) and dissipation (viscosity)
- for $\Delta T > \Delta T_c$ translationally invariant state is dynamically unstable



Other examples:

- Belousov-Zhabotinsky chemical reaction
- Coat patterns of mammalians
- Driven lattice gas



Ways to generate macroscopic coherence

Direct injection by resonant pump laser

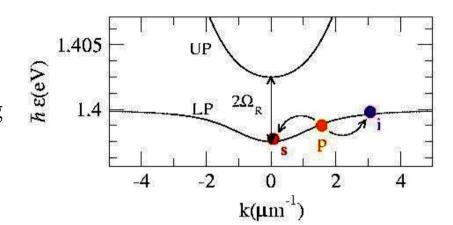
- coherence not spontaneous, imprinted by pump
- close relation with nonlinear optics, still interesting superfluidity properties

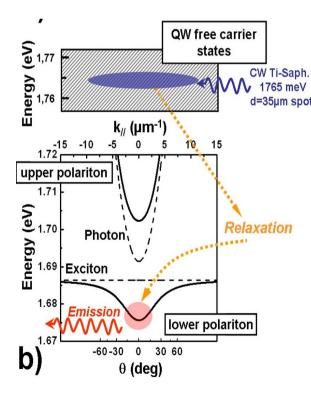
OPO process

- stimulated scattering into signal/idler modes
- spontaneous coherence, not locked to pump
- same spontaneous symmetry breaking *ab initio* theoretical description by stochastic GPE

Non-resonant pumping

- thermalisation due via polariton-polariton collisions, quasi-equilibrium condition
- coherence spontaneously created via BEC effect
- hard to theoretically model *ab initio*





(Fig. from Kasprzak et al., Nature 2006)

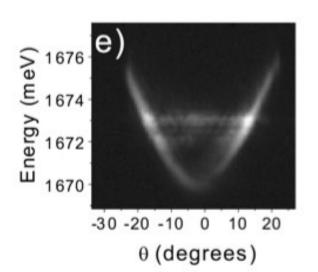
Simulations for pulsed excitation

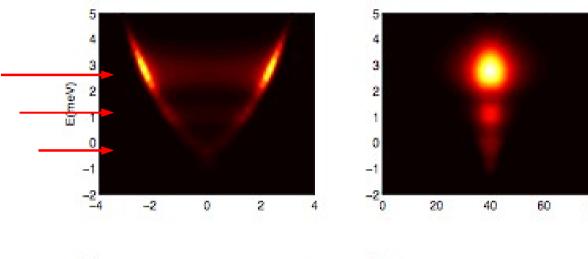
•Non-trivial time evolution:

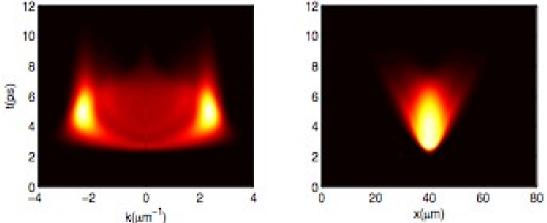
first k=0, then expands

•Emission concentrated at several E's

Also in expt's !!!







M. Wouters, IC and C. Ciuti,, preprint arXiv:0707.1446 (2007)

Vigner-OMC

Generalizes truncated-Wigner method for BECs (Lobo, Sinatra, Castin)

Time evolution: stochastic Gross-Pitaevskii equation

$$i d \begin{pmatrix} \psi_{X}(\mathbf{x}, t) \\ \psi_{C}(\mathbf{x}, t) \end{pmatrix} = \begin{bmatrix} \mathbf{h}^{0} + \begin{pmatrix} V_{X}(\mathbf{x}) + g(|\psi_{X}(\mathbf{x}, t)|^{2} - 1/dV) - i\gamma_{X} & 0 \\ 0 & V_{C}(\mathbf{x}) - i\gamma_{C} \end{pmatrix} \end{bmatrix} \begin{pmatrix} \psi_{X}(\mathbf{x}, t) \\ \psi_{C}(\mathbf{x}, t) \end{pmatrix} dt + \begin{pmatrix} 0 \\ k \mathcal{E}_{p}(\mathbf{x}, t) \end{pmatrix} dt + \frac{1}{\sqrt{4 \Delta V}} \begin{pmatrix} \sqrt{\gamma_{X}} dW_{X}(\mathbf{x}, t) \\ \sqrt{\gamma_{C}} dW_{C}(\mathbf{x}, t) \end{pmatrix}$$

Single particle Hamiltonian

$$\mathbf{h}^0 = \begin{pmatrix} \omega_X(-i\nabla) & \Omega_R \\ \Omega_R & \omega_C(-i\nabla) \end{pmatrix}$$

Losses $\gamma_{x c}$. Fluctuation-dissipation: white noise

$$\begin{array}{rcl} \overline{dW_i(\mathbf{x},t)\,dW_j(\mathbf{x}',t)} & = & 0 \\ \overline{dW_i(\mathbf{x},t)\,dW_j^*(\mathbf{x}',t)} & = & 2\,dt\;\delta_{\mathbf{x},\mathbf{x}'}\,\delta_{ij} \end{array}$$

Observables: MC averages over noise
$$\langle \psi_i^*(\mathbf{x}) \psi_i(\mathbf{x}) \rangle_W = \frac{1}{2} \left[\langle \hat{\Psi}_i^{\dagger}(\mathbf{x}) \hat{\Psi}_i(\mathbf{x}) \rangle + \langle \hat{\Psi}_i(\mathbf{x}) \hat{\Psi}_i^{\dagger}(\mathbf{x}) \rangle \right]$$

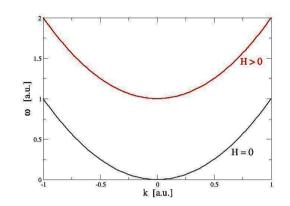
- → not linearized theory, full account of large fluctuations around critical point
- → any geometry can be simulated, full time-dynamics
 - → Accurate *ab initio* description of OPO transition

IC and C. Ciuti, PRL, **93** 166401 (2004); PSSb **242**, 2224 (2005); PRB 72, 125335 (2005)

Pinning the signal/idler phase

Goldstone mode in ferromagnets

- magnons: wavy oscillations in spin orientation
- spin orientation can be pinned by external B
- gap in Goldstone spectrum opens

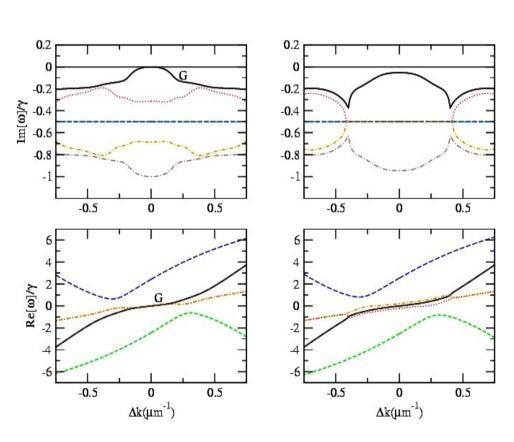


Goldstone mode of OPOs:

• slow rotation of signal/idler phases

Seed laser driving signal:

- stimulates signal emission, phase pinned
- phase symmetry explicitely broken
- gap opens in imaginary part of $\omega_{G}(k)$



M. Wouters, IC, The Goldstone mode of planar optical parametric oscillators, Phys. Rev. A 76, 043807 (2007)

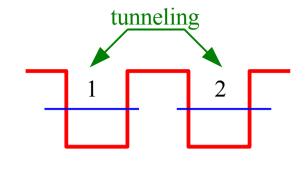
Two-well geometry: Josephson effect

 $\Psi_i \rightarrow \text{amplitude in i-th well; population } N_i = |\Psi_i|^2$

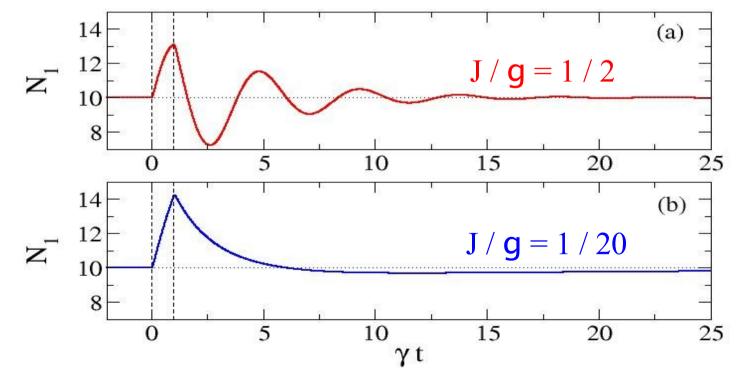
 $n_i \rightarrow reservoir density behind i-th well$

$$i \frac{d \psi_j}{dt} = -J \psi_{3-j} + U |\psi_j|^2 \psi_j + \frac{i}{2} [R(n_j) - \gamma] \psi_j$$

 $\frac{d n_j}{dt} = P_j - \gamma_R n_j - R(n_j) |\psi_j|^2.$



Exp. with polariton traps: El Daif *et al.*, APL '06 Baas, Richard *et al.*, '07 (ICSCE-3)



Josephson oscillations

Josephson oscillations

M. Wouters and IC, Excitations in a non-equilibrium polariton BEC, cond-mat/0702413, to appear on PRL

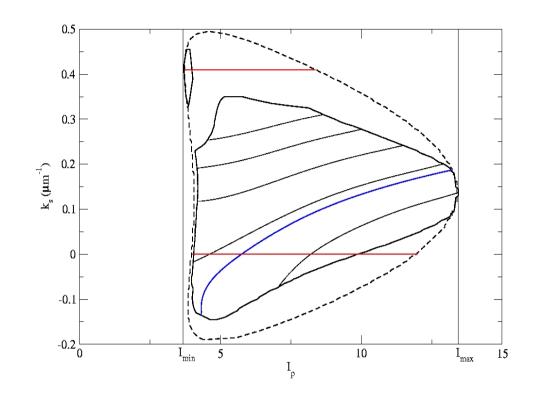
Finite spot effects

Equilibrium:

BEC in lowest energy state

Non-equilibrium:

- no free-energy available
- k_s dynamically selected
- methods of pattern formation in nonlinear dynamical systems

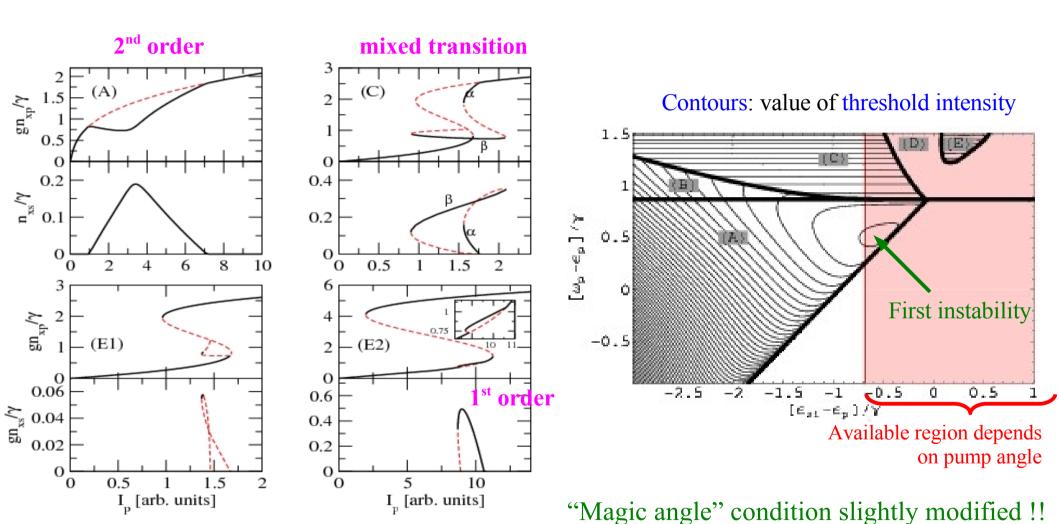


- Finite excitation spot: absolute vs. convective instability
- Single w_s, inhomogeneous broadening of k_s due to spatially varying pump intensity profile: change in k_s

Richer physics than simple Thomas-Fermi profile of equilibrium BECs!!

M. Wouters and IC, Pattern formation effects in parametric oscillation in semiconductor microcavities, in preparation

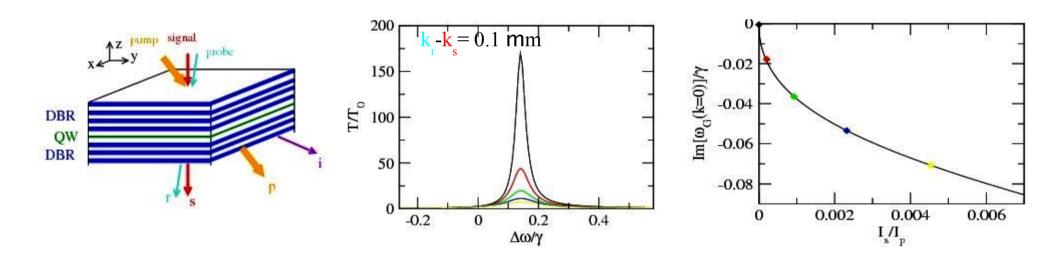
Not only second-order phase transition...



M. Wouters and IC, *The parametric oscillation threshold of semiconductor microcavities in the strong coupling regime*, PRB **75**, 075332 (2007)

Observing the Goldstone mode

- Goldstone mode: peak in probe transmission at angle close to signal
- amplified transmission w/r to unloaded cavity resonant transmission
- when phase pinned by signal laser: peak broadened and suppressed



Hard to do with atoms because of atom number conservation

Experimental observations

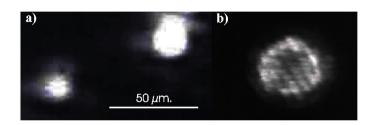
Correlation functions of emission reproduce those of cavity polaritons

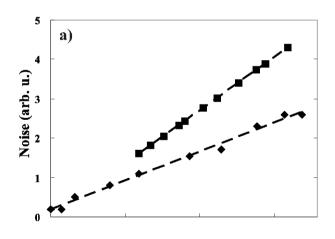
$g^{(1)}(x) \rightarrow Young-like$ experiment

- light from two paths interferes
- above threshold: fringes observed

$g^{(2)}(x) \rightarrow \text{noise-correlation experiment}$

- output beam cut by razor blade
- above threshold: linear dependence means single spatial mode
- slope means excess noise over standard quantum limit





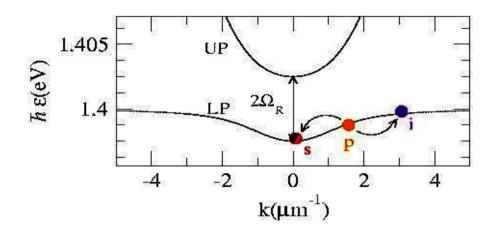
(figs. from Baas et al., PRL 2006)

Good agreement with theory!!

Let's go beyond mean field...

Coherent pump around "magic angle":

- resonant parametric scattering into signal/idler modes
- strong pumping: scattering is stimulated



Above threshold for parametric oscillation:

- spontaneous appearance of coherence, phase not locked to pump
- same spontaneous U(1) symmetry breaking as in BEC

Ab initio theoretical description available by stochastic GPE - Wigner QMC

- → any geometry can be simulated, full time-dynamics
- → not linearized theory, full account of fluctuations even around critical point

IC and C. Ciuti, Spontaneous microcavity-polariton coherence across the parametric threshold: Quantum Monte Carlo studies, PRB 72, 125335 (2005)

The parametric oscillation threshold

Pump beam close to magic angle for OPO process

Below threshold:

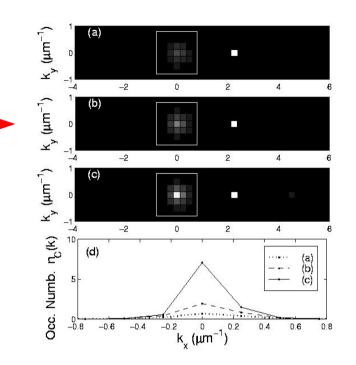
- coherent emission from pump mode
- quantum fluctuations: many-mode incoherent luminescence
- strongest for signal and idler around phase-matching

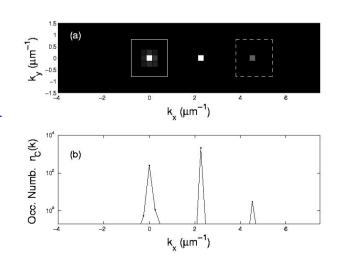
Approaching threshold:

• signal/idler intensity increases, linewidth narrows

Above threshold:

- single signal/idler pair selected
- emission becomes macroscopic
- signal/idler phases still random, only their sum fixed





Signal/idler coherence across threshold

First-order coherence $g^{(1)}(x)$

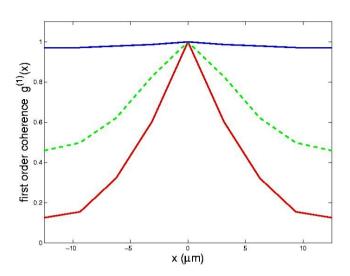
- approaching threshold from below: 1 diverges
- above threshold: long-range coherence
- BEC according to Penrose-Onsager criterion
- coherence NOT inherited from pump

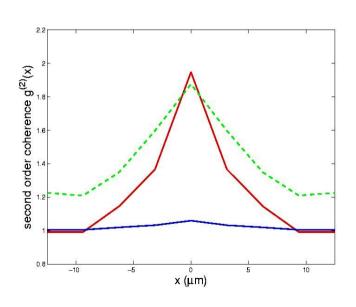
Second-order coherence $g^{(2)}(x)$

• below threshold: HB-T bunching

$$g^{(2)}(0)=2$$
, $g^{(2)}(large x)=1$

• above threshold: suppression of fluctuations: $g^{(2)}(x)=1$





As in atomic gases at thermal equilibrium!

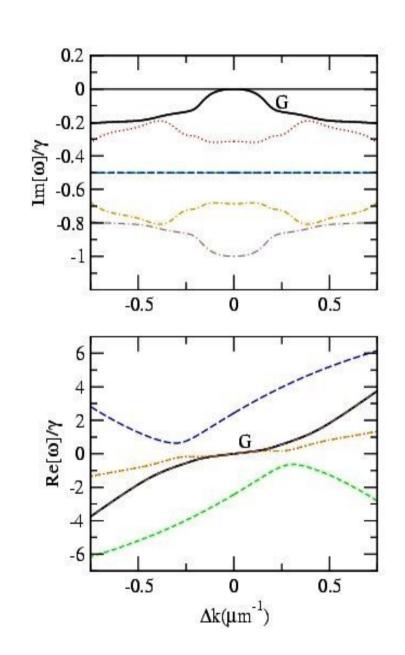
A closer look at the Bogoliubov modes

Steady-state above threshold:

- coherent signal/idler beams
- U(1) symmetry spontaneously broken
- soft Goldstone mode $\omega_{G}(k) \to 0$ for $k \to 0$
- corresponds to slow signal-idler phase rotation
 - → as Bogoliubov phonon at equilibrium !!!

Fundamental physical difference:

→ Goldstone mode diffusive, not propagating like sound



Simultaneously to our work:

M. H. Szymanska, J. Keeling, P. B. Littlewood, *Nonequilibrium Quantum Condensation in an Incoherently Pumped Dissipative System*,

PRL 96, 230602 (2006)

Calculate Goldstone mode dispersion under non-resonant pumping

also in this case: diffusive Goldstone mode!!

- Is this a general result of non-equilibrium systems?
- Simple physical interpretation ?