
Quantum Optics Research Exercise

The gapped Goldstone mode of a coherent injected laser

We model an externally injected laser in a spatially extended planar geometry by means
of a classical field equation for the in-cavity field E(r, t) in the form:
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The cut-off frequency of the planar cavity is ω0, the effective photon mass is m∗ and g is
a nonlinear interaction constant describing the blue-shift of the optical mode due to a χ(3)

susceptibility of the cavity material. Furthermore, γ is the linear loss rate, P is the pump
strength and ns the gain saturation density. The spatial derivatives are meant to be taken
along the r = {x, y} in-cavity directions only.

The initial steps of the study are very similar to the Exercise 4 of the Quantum Optics
course, The collective excitation modes of a lasing device. As a key step forward, we now
focus on the effect of a monochromatic incident field at normal incidence. This is described
in our model by the last term in the equation, namely a coherent drive of spatially constant
amplitude Einc and frequency ωinc.

In the first part of the Research Exercise, we aim at characterizing the dynamical evo-
lution of a spatially uniform field, in particular its steady-states and possible limit cycle
behaviours.

1. Write the evolution equation of the field Ē in the rotating frame at ωinc where no
explicit time-dependence is present in the equation of motion for the field.

2. Assuming that the field is spatially uniform along the r plane, write an ordinary
differential equation for its amplitude and, then, an algebraic equation for its steady-
state amplitude Ēss.

(a) Assume for this question g = 0 and ωinc−ω0 = 0. Keeping all other parameters
fixed, write the incident intensity |Einc|2 as a function of the steady-state am-
plitude |Ēss|2. Identify the different regimes in analogy to the magnetization of
a ferromagnet under an external magnetic field. Discuss the relation between
the phase of Ēss and the one of Einc.

(b) Assume for this question g = 0. Study the incident intensity |Einc|2 as a function
of the steady-state amplitude |Ēss|2 and discuss the relation between the phase
of Ēss and the one of Einc. Clarify the physical role of the detuning ωinc − ω0.

(c) Repeat the study for non-zero g and identify regimes displaying multi-stability
phenomena.
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3. Keep assuming that the field amplitude is spatially uniform. Make use of some
numerical plotting software to display the vector field corresponding to the time-
evolution of the (spatially uniform) amplitude Ē in the complex plane. Perform a
qualitative study of the main features of this vector field for different choices of the
parameters.

(a) Identify within this formalism the steady-states found above and, making use of
the plots, try to characterize their dynamical stability in the different regimes.
Give a physical interpretation of the results.

(b) Using again a combination of a numerical software and of qualitative methods
for differential equations, try to identify other solutions of the time-evolution of
the field, in particular in the form of a limit cycle.

(c) Show that such limit cycle solutions are in particular possible in the regime of
small Einc and non-zero ωinc − ω0. Give a physical interpretation of these limit
cycle solutions and, in particular, of their period.

In the second part of the Research Exercise, we aim at studying the collective excitation
modes around the different steady states. In particular, we wish to understand the nature of
the gap that opens in the Bogoliubov dispersion relation as a consequence of the explicitly-
symmetry-breaking term Einc. The general approach closely follows the calculations of
Exercise 4.

4. Write the partial differential equations describing the linearized time-evolution of
a small perturbation δĒ(r, t) around a steady state Ēss. Taking advantage of the
translational invariance of the problem, use the complex basis (δĒk, δĒ

∗
−k) and reduce

the partial differential equations to a 2 × 2 eigenvalue problem for the dispersion
relation ω(k).

5. For each of the different steady states found in the previous questions, study the
shape of the dispersion relation ω(k) in the different regimes of parameters.

6. In particular, characterize in which cases the gap in the collective excitation spectrum
opens in the real and/or in the imaginary part of ω(k = 0). Make use of this theory
to assess the dynamical stability or instability of the different steady-states.

7. Speculate on the shape of the collective excitation spectrum around a limit cycle
solution, especially in the limit of small Einc.

A presentation of the general theory underlying this Research Exercise can be found in
Secs.IV-B1 & C and Secs.VI-A1 & B of Rev. Mod. Phys. 85, 299 (2013).

The general goal of the exercise is to provide theoretical understanding of the experimantal

observations in arXiv:2310.11903 (to appear in Nature Physics, 2025).
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