A microscopic model for photo-detection

Consider a lossless single-mode optical cavity initially prepared in a given quantum state described by a density matrix ρ_0 . The cavity contains a photodetector device weakly coupled to the cavity mode.

The probability of detecting a photon after a given interval of time is p, which is assumed to be small enough for the probability of multiple clicks to be negligible. The overall probability of clicking is then $P = p \operatorname{Tr}[\hat{n} \rho_0]$. After a click event, the quantum state of the cavity can be described by the application of a photon destruction operator,

$$\rho_{\rm click} = \frac{\hat{a}\rho_0 \hat{a}^{\dagger}}{\mathrm{Tr}[\hat{n}\,\rho_0]}\,.\tag{1}$$

- 1. How many photons are present in average in the cavity after a click event if the initial state was a Fock state with N photons, $\rho_0 = |N\rangle\langle N|$?
- 2. How many photons are present in average in the cavity if the initial state was a coherent state of amplitude α , namely $\rho_0 = | \operatorname{coh} : \alpha \rangle \langle \operatorname{coh} : \alpha | ?$
- 3. How many photons are present in average in the cavity if the cavity was initially in a thermal state $\rho_0 = Z^{-1} e^{-\beta \hbar \omega \hat{a}^{\dagger} \hat{a}}$ with average photon number equal to N?
- 4. Explain these results in terms of the second order intensity correlation function $g^{(2)}$ of the cavity field and of the photon number distribution after the first detection event.

In an alternative picture, the photo-detection process can be microscopically modeled as a short unitary evolution under a beam-splitter Hamiltonian mixing the cavity mode \hat{a} with an initially empty auxiliary mode \hat{b} ,

$$\hat{U} = e^{-i\varepsilon[\hat{a}^{\dagger}\hat{b} + \hat{b}^{\dagger}\hat{a}]}, \qquad (2)$$

followed by a measurement of the photon number in the \hat{b} mode and a reinitialization of this mode into its vacuum state.

5. Within the Heisenberg picture, show that the field operators \hat{a}_{aft} and \hat{b}_{aft} after the action of U are related to the ones before U by:

$$\hat{a}_{aft} = \cos(\varepsilon) \,\hat{a}_{bef} - i \sin(\varepsilon) \,\hat{b}_{bef} \tag{3}$$

$$\hat{b}_{aft} = \cos(\varepsilon) \,\hat{b}_{bef} - i \sin(\varepsilon) \,\hat{a}_{bef} \,. \tag{4}$$

To this purpose, it can be useful to first find a Hamiltonian that recovers the evolution \hat{U} and then write the corresponding Heisenberg equations of motion for \hat{a} and \hat{b} . Relate the mixing angle ε to the detection probability p considered above.

- 6. Write the explicit expression of the density matrix ρ_0 of the three states considered above in terms of creation operators \hat{a}^{\dagger} acting on the vacuum state. Use this expression to write the density matrix after the detection process ρ_{aft} in terms of the Heisenberg picture operators \hat{a}_{aft} and, using the explicit expressions Eqs.(3-4), in terms of the Schrödinger-picture creation operators \hat{a}^{\dagger} and \hat{b}^{\dagger} acting on vacuum.
- 7. In the small p limit, project the density matrix ρ_{aft} on the one-photon state of the b mode. Show that, for the three initial (Fock, coherent, thermal) states considered above, this projected density matrix $\rho_{aft}^{(1)}$ matches the one predicted by Eq.(1) for the same case and well describes the state after a click event.
- 8. Show that, for small p, the probability of multiple clicks, namely of having more than one photon in the b mode is indeed negligible.