Fibers, Beam-splitters \& Rings

Consider the system sketched in the figure: a rectilinear fiber coupled to a ring cavity of radius R. The goal of the exercise is to characterize the amplitude of the transmitted light through the fiber as a function of the incident light frequency ω. We assume that propagation along both the fiber and the disk edge can be described in terms of a one-dimensional model with a frequency-dependent wavevector ω / c.

1. The fiber-ring coupling can be modelled as a two-port beam splitter. A beam splitter is characterized by a two-by-two matrix \mathbf{S} connecting the out-going fields to the in-going ones:

$$
\begin{equation*}
\binom{E_{o 1}}{E_{o 2}}=\mathbf{S}\binom{E_{i 1}}{E_{i 2}} \tag{1}
\end{equation*}
$$

Discuss the constraint imposed on the matrix \mathbf{S} by energy conservation in the case of a nonabsorbing beam splitter. Write the most general form of \mathbf{S} for a symmetric, non-absorbing beam-splitter.
2. Assuming the material of the disk to be perfectly transparent, propagation around the disk simply induces a phase shift $2 \pi R \omega / c$ to the field. Eliminating the fields in the disk, derive an equation relating the out-going field in the fiber $E_{o 2}$ to the in-going one $E_{i 2}$. The ratio $\tau(\omega)=E_{o 2} / E_{i 2}$ is generally called transmission amplitude.
3. Expand the denominator in the formula for $\tau(\omega)$ in powers and give a physical interpretation of the resulting series in terms of "diagrams".
4. Discuss the frequency-dependence of the transmittivity $T(\omega)=|\tau(\omega)|^{2}$ and of the transmission phase $\phi(\omega)=\operatorname{Arg}[\tau(\omega)]$. Give a physical interpretation of the resulting delay time $t_{d e l}=\frac{d \phi(\omega)}{d \omega}$ in terms of radiative linewidth of the ring mode.
5. Generalize the discussion to the case of a weakly absorbing ring (i.e. weak losses per round trip). In particular, study the dependence of the resonant transmission on the relative value of the radiative and non-radiative cavity damping rates. Identify and characterize the so-called under-coupling and over-coupling regimes.

