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1 A microscopic model for photodetection

Consider a lossless single-mode optical cavity initially prepared in a given quan-

tum state described by a density matrix ρ0. The cavity contains a photodetector

device weakly coupled to the cavity mode.

The probability of detecting a photon after a given interval of time (after turning

on the photodetector) is p, which is assumed to be small enough for the probabil-

ity of multiple clicks to be negligible. The overall probability of clicking is then

P = pTr[n̂ρ0], where n̂ is the number operator. After a click event, the quantum

state (i.e. the new density matrix) of the cavity can be described by the application

of a photon destruction operator,

ρclick =
âρ0â

†

Tr[n̂ρ0]
(1)

1.1 Case 1: ρ0 = |N⟩ ⟨N | [Fock state]

Let’s consider as our initial state a Fock state with N photons. How many

photons are present on average in the cavity after a click event? We can directly

calculate the new density matrix using (1), remembering that â |N⟩ =
√
N |N − 1⟩

and n̂ = â†â:

ρclick =
â |N⟩ |N⟩ â†

Tr[n̂ |N⟩ ⟨N |]
=

N |N − 1⟩ ⟨N − 1|
N

= |N − 1⟩ ⟨N − 1|
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1.2 Case 2: ρ0 = |coh : α⟩ ⟨coh : α| [coherent state]

Thus, the average number of photons after a click will be simply

⟨n⟩ = Tr[n̂ρclick] = N − 1

We conclude that after a click event the overall probability of detecting a photon

has slightly decreased (because it depends directly on the average number of photons

in the cavity, since P (t) = p(t) ⟨n⟩t ), but this fact could be expected. In fact, if we

look at the photocorrelation function for different times g(2)(t, t′), with t′ > t, we

know that this correlation value will be less than 1 for Fock states, meaning that

if we detect at time t one photon, we have a reduced probability of finding another

one immediately after that measure.

1.2 Case 2: ρ0 = |coh : α⟩ ⟨coh : α| [coherent state]

Let’s consider as our initial state a coherent state with amplitude α. How many

photons are present on average in the cavity after a click event? We can directly cal-

culate the new density matrix using (1), remembering that by definition of coherent

states â |coh : α⟩ = α |coh : α⟩:

ρclick =
â |coh : α⟩ ⟨coh : α| â†

Tr[n̂ |coh : α⟩ ⟨coh : α|]
=

|α|2 |coh : α⟩ ⟨coh : α|
|α|2

= |coh : α⟩ ⟨coh : α|

Thus, the average number of photons after a click will be simply

⟨n⟩ = Tr[n̂ρclick] = |α|2

We conclude that after a click event the overall probability of detecting a photon

has remained the exactly thr same, but this fact could be expected. In fact, if we

look at the photocorrelation function for different times g(2)(t, t′), with t′ > t, we

know that this correlation value will be equal to 1 for coherent states, meaning that

if we detect at time t one photon, we have a the same probability as before of finding

another one immediately after that measure.

1.3 Case 3: ρ0 as thermal state, with ⟨n0⟩ = N

Let’s consider as our initial state a thermal state ρ0 = Z−1e−βℏωââ† with average

photon number equal to N . How many photons are present on average in the cavity
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1.3 Case 3: ρ0 as thermal state, with ⟨n0⟩ = N

after a click event? We can directly calculate the new density matrix using (1),

remembering the cited above properties of the ladder operators when applied to

Fock states:

ρclick =
1

Z

â
∑∞

n=0 e
−βℏωn |n⟩ ⟨n| â†

Tr[n̂ρ0]

Note that the average number of photons calculated on ρ0 will be equal to N by

our initial assumption, but also to the specific Bose population factor for a certain

temperature β:

Tr[n̂ρ0] =
1

Z

∞∑
n=0

ne−βℏωn =
1

eβℏω − 1
= N

Moreover, also the partition function can be recast in terms of N multiplied by an

exponential, as follows:

Z =
∞∑
n=0

e−βℏωn =
1

1− e−βℏω =
eβℏω

eβℏω − 1
= Neβℏω

We insert these new expressions inside ρclick and we end up with this expression:

ρclick =
e−βℏω

N2

∞∑
n=1

ne−βℏωn |n− 1⟩ ⟨n− 1|

At this point, we can evaluate what will be the average number of photons after a

click:

⟨n⟩ = Tr[n̂ρclick] =
e−βℏω

N2
Tr

[
∞∑

n′=0

∞∑
n=1

nn′e−βℏωn |n− 1⟩ ⟨n− 1| |n′⟩ ⟨n′|

]
=

=
e−βℏω

N2
Tr

[
∞∑
n=2

n(n− 1)e−βℏωn |n− 1⟩ ⟨n− 1|

]
=

=
e−βℏω

N2

∞∑
n=2

n(n− 1)e−βℏωn =

=
e−3βℏω

N2

d2

dz2

[
∞∑
n=0

e−βℏωn

]
= (derivative of the geometric series)

=
e−3βℏω

N2

2

(1− e−βℏω)3
=

2N3

N2
= 2N

3



We conclude that after a click event the overall probability of detecting a photon

has been increased by a factor 2, but this fact could be expected. In fact, if we

look at the photocorrelation function for different times g(2)(t, t′), with t′ > t, we

know that this correlation value will be almost equal to 2 for thermal states when

|t−t′| ≪ 1, meaning that if we detect at time t one photon, we have a super-poissonic

probability of finding another one immediately after that measure. In other words,

photons are said to arrive in bunches.

2 An alternative picture: the mixing Hamiltonian

In an alternative picture, the photo-detection process can be microscopically

modeled as a short unitary evolution under a beam-splitter Hamiltonian mixing the

cavity mode â with an initially empty auxiliary mode b̂,

Û = e−iϵ[â†b̂+b̂†â] (2)

followed by a measurement of the photon number in the b̂mode and a reinitialization

of this mode into its vacuum state. Please notice that from now on we will refer to

ϵ as a sort of mixing angle, but in reality this should be an infinitesimal amount of

time during which we let the cavity interact with the photodetector, and collecting

some photons on it.

Within the Heisenberg picture, we are interested in finding the time evolution

of the operators â and b̂ after the short mixing interaction. Looking at the short

unitary propagator Û , we define the interaction Hamiltonian Hint as

Hint = â†b̂+ b̂†â

Recalling the commutation relations [â, â†] = [b̂, b̂†] = 1, we write the 2 Heisenberg

equations as (for simplicity, we consider ℏ = 1)

∂â

∂t
=

1

i
[â, Hint] =

1

i
[â, â†b̂+ b̂†â] = −ib̂

∂b̂

∂t
=

1

i
[b̂, Hint] =

1

i
[b̂, â†b̂+ b̂†â] = −iâ
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2.1 Evaluation of ρclick adopting the mixing Hamiltonian

This is a system of coupled differential equations, which can be easily decoupled by

taking the second derivative of one equation and inserting the other one inside:

∂2â

∂t2
= −i

∂b̂

∂t
= −â → â(ϵ) ≡ âaft = A0 cos ϵ+B0 sin ϵ

∂2b̂

∂t2
= −i

∂â

∂t
= −b̂ → b̂(ϵ) ≡ b̂aft = C0 cos ϵ+D0 sin ϵ

Finally, the 4 coefficients can be determined by imposing the initial conditions and

the matching dictated by the coupling constraint:

â(0) = âbef , b̂(0) = b̂bef → A0 = âbef , C0 = b̂bef

∂â

∂t
= −ib̂,

∂b̂

∂t
= −iâ → B0 = −iC0, D0 = −iA0

Thus, we can write the field operators âaft and b̂aft after the action of Û as

âaft = Û †âbef Û = âbef cos ϵ− ib̂bef sin ϵ (3)

b̂aft = Û †b̂bef Û = b̂bef cos ϵ− iâbef sin ϵ (4)

We can find an interesting relation between the mixing angle ϵ and the detection

probability p considered in the first part of the exercise. In fact, if we consider the

average number of photons in the b̂ mode after the interaction, we get (supposing

no photons in the b̂ mode before the interaction, i.e. ⟨b̂†bef b̂bef⟩ = ⟨â†bef b̂bef⟩ =

⟨b̂†bef âbef⟩ = 0)

⟨nb⟩aft = ⟨b̂†aftb̂aft⟩ = ⟨â†bef âbef⟩ sin
2 ϵ ≃ Nϵ2 if ϵ is very short

From a direct comparison with the expression for the overall probability of clicking

considered in the first part, we get immediately that p = ϵ2 when ϵ is small enough.

2.1 Evaluation of ρclick adopting the mixing Hamiltonian

In order to to write the density matrix ρaft after the detection process in terms

of the Heisenberg picture operators, we start rewriting the initial quantum state ρ0

of the three states considered above in terms of creation operators â, â† acting on

the vacuum state.
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2.1 Evaluation of ρclick adopting the mixing Hamiltonian

For the Fock state |N⟩ ⟨N |, we get immediately

ρ0 = |N⟩ ⟨N | = 1

N !
(â†)N |vac⟩ ⟨vac| (â)N

For the coherent state, we make use of its decomposition in terms of Fock states:

ρ0 = |coh : α⟩ ⟨coh : α| =

(
e−|α|2/2

∞∑
n=0

αn(â†)n

n!
|vac⟩

)(∑
n′=0

⟨vac| (α
∗)n

′
(â)n

′

n′!
e−|α|2/2

)

Finally, for the thermal state we make use of the same decomposition in terms of

Fock states:

ρ0 =
1

Z

∞∑
n=0

e−βℏωn |n⟩ ⟨n| = 1

Z

∞∑
n=0

e−βℏωn

n!
(â†)n |vac⟩ ⟨vac| (â)n

At this point, ρaft can be obtained for each case by simply applying the evolution

operator on both sides of the density matrix, ρaft = Ûρ0Û
†. Given the explicit

expressions of ρ0 in terms of the â and b̂ operators and given that Û acts trivially

on the vacuum Û |vac⟩ = |vac⟩, it is easy to see that ρaft is obtained by substituting

the explicit form of the evolved field operators âaft and b̂aft inside the 3 types of

density matrix: for example, for the Fock state we get

ρclick[fock] = Ûρ0Û
† = Û

1

N !
(â†)N |vac⟩ ⟨vac| (â)N Û † =

=
1

N !
(Û â†Û †)N Û |vac⟩ ⟨vac| Û †(Û âÛ †)N =

=
1

N !
(â†bef cos ϵ− ib̂†bef sin ϵ)

N |vac⟩ ⟨vac| (âbef cos ϵ+ ib̂bef sin ϵ)
N

The substitution in the other 2 cases is exactly the same.

Now, in the small p limit, we can project the density matrix ρaft on the one-

photon state of the b̂ mode |1b⟩ and see what happens. Small p means, first of all,

that the probability of multiple clicks, namely of having more than one photon in

the b mode is negligible. We can convince ourselves that this is true by looking at

the different contributes in the density matrix ρaft. In particular, the terms |2b⟩ ⟨2b|,
|3b⟩ ⟨3b| exhibit a higher power coefficent ϵ in front of them (to the fourth, to the

sixth...): thus, we can neglect all such terms if we stop our statistical evaluation at

the first/second order of ϵ! Going back to our Fock state, keeping just the 1 photon

6



2.1 Evaluation of ρclick adopting the mixing Hamiltonian

term in the b̂ mode means applying N − 1 times the ladder operators â and then

applying one single b̂. Taking into account of the degeneracy N of these contributes

and simplifying the N factorial, we obtain

⟨1b| ρclick[fock] |1b⟩ ≃
N2ϵ2 |N − 1⟩a ⟨N − 1|a

N
= Nϵ2 |N − 1⟩a ⟨N − 1|a

This result matches the one predicted by using (1) in the first part of the exercise,

apart from the coefficient Nϵ2. In reality also this coefficient is perfectly coherent

with our new description, because now the photodetector in principle could reveal

more than one photon per time, but with a much less probability. This coefficient

tells us what is the probability of observing this 1-photon density matrix after having

performed the short interaction which weakly couples the cavity with the detector.

Moreover, this coefficient was also present in the first part of the exercise, when we

said at the beginning that the overall probability of clicking one photon was exactly

P = p ⟨N⟩0. So, everything is consistent and we are happy.

In a similar way, we can verify that also for the other 2 cases we obtain expressions

in accordance with the previous one calculated:

⟨1b| ρclick[coh] |1b⟩ ≃

(
e−|α|2/2

∞∑
n=1

nαn(â†)n

n
√
(n− 1)!

|n− 1⟩a

)
×

×

(∑
n′=1

⟨n′ − 1|a
n′(α∗)n

′
(â)n

′

n′
√
(n′ − 1)!

e−|α|2/2

)
ϵ2 = |α|2ϵ2 |coh : α⟩ ⟨coh : α|

Please notice that for the coherent state the initial average number of photons was

equal to the square modulus of its amplitude, i.e. N = |α|2.

⟨1b| ρclick[therm] |1b⟩ ≃ ϵ2
1

Z

∞∑
n=1

n2e−βℏωn

n
|n− 1⟩a ⟨n− 1|a =

= Nϵ2
e−βℏω

N2

∞∑
n=1

ne−βℏωn |n− 1⟩a ⟨n− 1|a

We conclude that also these 2 results show the same ρclick evaluated in the first part

of the exercise, multiplied by the overall probability of detecting just one photon

during the measure, which is P ≃ Nϵ2 in the limit of very short ϵ.
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