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Preface

This thesis summarizes the main topics of the research activity performed during
the three years of the Corso di Perfezionamento at the Scuola Normale Superiore in Pisa
under the supervision of prof. Giuseppe La Rocca: it has been my great pleasure to
have the possibility of exploring several different fields of physics and the main con-
clusion that I may be tempted to get from this experience is certainly that physics is
still much more unified than people generally say. Indeed, it seems to me still possi-
ble as well as very fascinating to try to keep track of the main ideas of neighboring
fields so as to mutually exchange techniques and physical pictures; in this way, all
tields can profit from a strong cross-fertilization effect.

Even if completely different physical systems have been examined during these
three years, most of the thesis can be considered as the discussion of a pair of differ-
ent realizations of the same physical concept, the interacting bosonic field: both light
waves and bosonic atoms can be in fact described in terms of a quantum field with
Bose commutation relations. The different pictures that we generally have in mind
of the two systems derive not only from the different dispersion laws of the two
particles and, in particular, the massive nature of the atomic field with respect to the
massless electromagnetic field, but also from the much shorter wavelength of room
temperature matter waves with respect to visible light. Of course, the atom is here
considered as a single entity and its composite nature generally neglected: this sim-
plified description is clearly correct only provided its internal degrees of freedom
are not involved in the dynamics.

The different historical development of human knowledge about the matter and
the light fields closely reflects these points: the relatively long wavelength of visi-
ble light has allowed a rather early observation of the interference and diffraction
effects typical of a wave, while the smallness of the single photon energy has hid-
den the quantum nature of the light field until the beginning of the century when
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the photoelectric effect was discovered. On the other hand, the discrete nature of
the matter field, already guessed by the ancient Greeks, has been the base of all
atomistic theories of matter, whereas the shortness of the atomic wavelength has
hidden the wavy character until the first atomic interference experiments in the late
twenties. Both the particle and the wave character of the quantum Bose field have
therefore been known for centuries, but only very recently it has been realized that
they are different aspects of the same entity; only the advent of modern quantum
mechanics and, in particular, of quantum field theory has led to the unification of
the wave and particle concepts into the unified concept of quantum field so that
matter and light have ceased to be considered completely distinct physical entities.

Very remarkably, the field-theoretical description of collisional atom-atom interac-
tions is analogous to the description of optical nonlinearities in dielectric media with
an intensity dependent refraction index: in both cases, in fact, the Hamiltonian has
to include an interaction term quartic in the field operators. This means that any
physical consideration on an interacting atomic Bose gas is easily extended to an
interacting gas of photons which propagate in a nonlinear medium and vice versa.
Thanks to the recent progress in the realization of coherent sources of matter waves,
the analogy of atom optics with photon optics is now complete: such atom laser
beams are in fact the atomic analogs of optical laser beams and have very similar all-
order coherence properties; for this reason, nonlinear atom optics with atom laser
beams is now the subject of a very intense research. In particular, the much stronger
atom-atom interaction strength with respect to the effective photon-photon one in
nonlinear media is expected to allow for appreciable nonlinear optical effects with
just a very small number of quanta, so that definitely quantum effects such as non-
classical beams and quantum entanglements should be more easily observed with

matter waves.

The first part of the thesis is devoted to a discussion of nonlinear optical effects in
the presence of dielectric systems which modify the mode structure of the electro-
magnetic field, in particular distributed Bragg reflector microcavities. In the pres-
ence of discrete states, the light field can be described in terms of a finite number of
harmonic oscillators and the nonlinearities are included as additional anharmonic
terms in the Hamiltonian; damping terms account for the coupling to the continuum
of propagating states external to the dielectric structure. At the classical level, the
description in terms of such discrete modes is shown to be equivalent to Maxwell’s
wave equations in a nonlinear dielectric medium but leads to much simpler calcu-
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lations; instead of working with nonlinear partial differential equations, a simple
system of a few ordinary differential equations is able to give accurate quantitative
predictions as well as a deeper insight in the physical behavior. In this approach,
all the details of the specific system under examination are summarized in a small
number of parameters governing the dynamics of the system. In particular, we shall
discuss two different kinds of optical nonlinearities: an intensity-dependent refrac-
tion index and resonant two-photon processes; in both cases, the transmission spec-
tra of the microcavity are characterized for growing values of the incident intensity
and the possibility of observing optical bistability and optical limiting pointed out.
In addition, we shall study the linear optical response of the cavity to a weak probe
tield when it is optically dressed by a strong pump beam: the control of the probe
transmission by the pump beam can be interpreted as an optical transistor behav-
ior, while the shift and splitting of the excitonic spectral features which appear in
the case of two-photon absorption can be seen as a two-photon optical Stark effect.

Given the strict analogy between Maxwell’s equations for the electromagnetic field
in nonlinear materials and the Gross-Pitaevskii equation for the coherent interacting
matter waves of a Bose condensate or an atom laser, much of the results of the first
part are applied in the second part to the propagation of a coherent atomic beam
through an optical lattice; the periodic optical potential of the laser field is in fact
a sort of distributed Bragg reflector for matter waves and a microcavity can be ob-
tained using a spatially modulated lattice. The discrete modes which appear in the
numerically predicted transmission spectra are interpreted in terms of an effective
mass approximation: since the atomic mass at the gap edge is much lighter than
the free-space mass, the mode spacing can be as large as one tenth of the atomic
recoil energy. This fact, together with the narrow linewidth of the modes, suggests
the use of such atomic Fabry-Perot cavities for nonlinear atom optics experiments:
collisional atom-atom interactions will be shown to allow for (atom) optical limiting

and (atom) optical bistability.

Since the strength of atom-atom interactions is generally orders of magnitude larger
than the effective strength of the photon-photon interactions induced by the non-
linear dielectric material, the mean-field approach underlying the Gross-Pitaevskii
equation for the atomic field is more likely to fail than Maxwell’s equation of clas-
sical electrodynamics. In other terms, the appearance of an appreciable nonlinear
optical effect generally requires a smaller number of quanta in the atomic case, so
that nonclassical effects should be better observed with matter waves rather than
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light waves.

The third part of the thesis is devoted to the exact study of a strongly interacting
Bose field beyond the mean field approximation and, in particular, of the quantum
coherence properties of the field. In the case of a single-mode cavity, such a calcu-
lation can be exactly performed in terms of the quantum master equation for the
field: for low values of the nonlinear coupling, the behavior is close to the one pre-
dicted by the mean-field theory: quantum effects are only a small correction and
can be treated in a perturbative way. For strong nonlinearities, definitely quantum
effects appear in the coherence properties of the transmitted beam: for the case of
an incident beam exactly on resonance with the empty cavity, a sort of atom blockade
effect will be discussed; for the case of a blue-detuned incident beam (and repulsive
interactions), a bimodal shape is found for the steady-state atom distribution in the
cavity mode, which is the quantum generalization of optical bistability.

While the simple structure of the Hilbert space of the single-mode system has al-
lowed the quantum master equation to be numerically solved, an analogous task
becomes quickly unfeasible as soon as a few modes of the field have to be included:
as most relevant examples, the dynamics of an atomic cloud in a magnetic trap
as well as the coherence properties of light in a strongly nonlinear planar micro-
cavity are very hardly determined unless we limit ourselves to a mean-field ap-
proximation. The thesis is concluded by the discussion of a novel reformulation of
the time-evolution of an interacting Bose gas in terms of the stochastic evolution
of Hartree states; this work has been mainly performed at the Laboratoire Kastler-
Brossel in Paris® during the first months of 1999 under the supervision of proff.
Jean Dalibard and Yvan Castin. Among the many possible implementations of the
method, schemes can be found, which are not subject to the divergences typical
of Positive-P calculations since they lead to stochastic differential equations with a
regular solution for all times; the stochastic scheme of Positive-P representation is
itself recovered as another specific scheme of our general framework. Although the
numerical calculations performed so far have dealt only with very simple systems,
the approach looks very promising for the numerical study of multimode systems
involving a relatively small number of strongly interacting particles.

@Partial financial support from EC (TMR network ERB FMRX-CT96-0002) is acknowledged.
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Introduction

A substantial progress in the investigation of fundamental effects in light-matter in-
teraction has followed the development of laser sources, which are able to generate
fields of remarkable monochromaticity and intensity. Most experiment were ini-
tially carried out on gaseous samples, which have optical transitions with a homo-
geneous linewidth very close to the natural radiative one.!? In this way it is possible
to perform the experiments of interest without being disturbed by spurious damp-
ing effects which could hide the process under examination. Very recently, laser
cooling and trapping techniques have allowed to overcome even Doppler broaden-
ing effects: in this way it is now possible to cool the atoms down to temperatures for
which the Doppler linewidth is much smaller than the natural one.> However, all
these experiments require an apparatus which is far from being simple and portable:
several laser sources are in fact needed to manipulate the atoms and the alignment
of the experimental setup can be problematic.

Since the recent progress in growing semiconductor samples with optical features
sufficiently sharp and free from unwanted damping effects, there has been much
interest in trying to export all the nonlinear and quantum optics formalism to the
description of optical processes in solid-state samples. From the experimental point
of view it is in fact much simpler to work with a solid-state sample than with an
atomic one: once the sample has been grown, there is no need for complicate ma-
nipulations but for its cooling down to a few Kelvin via conventional techniques.
From the point of view of applications, optical elements as small and as portable
as semiconductor ones have an enormous utility, since light-emitting diodes, har-
monic generators and bistable elements are widely applied in all sorts of optical
setups. Also from a fundamental point of view the study of optical properties of
solid-state materials can bring to a deeper understanding of the dynamics of the
material excitations which are made to interact with the electromagnetic field, e.g.
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phonons, free electron-hole pairs, excitons and even biexcitons.

The recent developments in the controlled growth of heterostructures of different
semiconducting materials on the nanometer scale have opened the possibility of
having the carrier motion quantized in some spatial directions and hence of study-
ing electronic systems with reduced dimensionalities such as quantum wells (2D),
quantum wires (1D) and even quantum dots (0D).* Since the confinement of carriers
makes the excited electron-hole pairs to interact more strongly among them, such
systems are very interesting from the point of view of nonlinear optics: sharp exci-
tonic resonances can be observed in the optical response even at room temperature
and the corresponding susceptibilities show a strong dependence on the excitation

level >®

But semiconductor heterostructures not only can affect the carrier motion in the ma-
terial, but can also modify the structure of photonic modes; in particular, it has been
shown as possible to have a photonic density of states which vanishes in a certain
window as well as a sharply peaked one. A vanishing density of states can be ob-
served in a photonic band gap (PBG) crystal: thanks to the periodic modulation of
the refraction index, light is effectively forbidden from propagating at frequencies
comprised within the gap and spontaneous emission can not occur at such frequen-
cies. Sharp peaks in the density of states can be observed in microcavity systems, in
which light is confined by a pair of distributed Bragg reflectors (DBR): the presence
of the cavity mode gives a sharply peaked density of states at the resonance fre-
quency with a spatially localized photonic wavefunction. Provided the damping is
weak enough, the strong enhancement of the light-matter interaction which follows
the spatial localization of both the photonic and the excitonic modes can eventually
lead to a strong coupling regime in which the eigenmodes of the system are mixed
exciton-polariton modes.

Much of the published literature on semiconductor microcavities deals with linear
optical processes; only recently nonlinear and quantum effects in such structures
have been studied and observed. This field obviously deserves a greater attention,
both because it can provide new informations on the dynamics of carriers in het-
erostructures and because the specific nonlinear properties of the material may al-
low for new optical processes.

This first part of the thesis is devoted to the study of the optical properties of semi-
conductor DBR microcavities at both linear and nonlinear regime: in chap.1, we give
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a short and simple review of the linear regime behavior; the two following chaps.2
and 3 summarize our original results on the nonlinear response of semiconductor
microcavities in the presence of either an intensity-dependent refractive index or
resonant two-photon processes such as second-harmonic generation or two-photon
absorption.
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Chapter 1

Linear optics of semiconductor DBR
microcavities

This first chapter contains a short review of the linear optical properties of photonic
band gap (PBG) crystals, distributed Bragg reflectors (DBR) and finally DBR mi-
crocavities: in all these systems, a spatial modulation of the dielectric properties is
exploited in order to strongly modify the photonic mode structure with respect to
the free-space one.

Sec.1.1 discusses the photonic dispersion in systems in which the dielectric constant
has a periodic spatial modulation, such as PBG crystals: the typical features of wave
dispersion in periodic systems are recovered, such as allowed bands and forbidden
gaps.

Sec.1.2 applies these ideas to the so-called distributed Bragg reflectors (DBR): a light
beam which incides on the finite slab of PBG forming the DBR mirror is transmitted
if the frequency corresponds to a band while it is nearly totally reflected if the light
frequency corresponds to a forbidden gap in the photonic dispersion.

The two following sections introduce the concept of a DBR microcavity from two
different points of view: in sec.1.3 we shall consider the optical cavity formed by a
pair of DBR mirrors separated by a cavity layer of dielectric. As it is well-known
from classical electromagnetism, the mirrors impose boundary conditions to the
electromagnetic field in the cavity and the frequencies of the resulting localized
modes depend on the thickness of the cavity layer. From a different point of view
(sec.1.4), these same modes can be interpreted as defect states in an otherwise pe-
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riodic PBG crystal in exactly the same way as the bound states of the carriers in a
doped semiconducting material.

The localization of the photonic mode wavefunction can be used to enhance the
interaction of the light field with matter: as discussed in sec.1.5, if an excitonic tran-
sition is coupled to the cavity mode, a strong coupling regime can be achieved, in
which the eigenmodes of the coupled system are a pair of polaritonic mixed states,
i.e. linear superposition of matter and light excitations; in the transmission spectra,
the mixing reflects into a splitting of the cavity transmission peak into a doublet of
peaks.

In the case the excitonic linewidth is much smaller than the photonic one, quantum
coherence effects between the polaritons are predicted to give rise to peculiar sharp
features in the linear transmission spectrum in the weak-coupling regime (sec.1.6).
This effect can be interpreted as the microcavity analog of the Fano interference
profile of electromagnetically induced transparency.

Sec.1.7 completes the picture with a brief discussion of the properties of coupled
DBR microcavities, i.e. a pair of DBR microcavities sharing a (generally less re-
flecting) central mirror. Such a system is characterized by a pair of localized cavity
modes which are mutually coupled by the tunneling through the central mirror and
the eigenmodes consist of a doublet of delocalized modes over the two cavities.

1.1 The Photonic Band Gap (PBG) crystal

As it is well known for electrons in a crystalline solid,” the dispersion of any par-
ticle or excitation in a system with a spatial periodicity is characterized by allowed
bands and forbidden gaps. In particular, this is valid for the photonic dispersion in a

material medium with spatially periodic refractive properties.’*!!

The discrete translational symmetry of the system allows in fact for the application
of Bloch’s theorem” so that the energy states can be classified in terms of a quasimo-
mentum k which spans the first Brillouin zone (FBZ) of the lattice, and a band index.
Great effort has been recently devoted to the realization of structures showing a
complete photonic band gap (PBG), i.e. a finite energy window in which the pho-
tonic density of states vanishes and light propagation is forbidden, irrespective of
its propagation direction. In such systems, in fact, spontaneous emission processes
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such as electron-hole recombination would be inhibited if the photonic band gap
overlaps the electronic band edge leading to increased efficiencies of a semiconduc-
tor laser as well as to a squeezing of the output field.!

Although its conceptual simplicity, this complete PBG has been very elusive; a great
deal of both theoretical and experimental works have appeared on the subject, some
of them using even sophisticated group theory techniques;'*° a complete PBG has
been finally obtained in the microwave frequency range using a fcc lattice with an

asymmetrical Wigner-Seitz unit cell.’®!

Given a lattice with a periodicity L and a mean refraction index 7, the first gap opens
up at a frequency of the order of the Bragg frequency
CcT
wpr = E (11)
A photonic crystal with the PBG located in the microwave range can be fabricated
just by drilling an array of appropriately oriented holes in a solid dielectric mate-
rial;'” the required spacing being of the order of a few millimeters, the holes can in

fact be easily obtained by means of ordinary microfabrication techniques.™

On the other hand, the realization of a structure showing a PBG at optical frequen-
cies is still an open problem, since it requires a spatial modulation of the dielectric
properties with a periodicity of the order of 100nm in all three dimensions. For such
a purpose, a number of different systems are actually being investigated, such as

18,19

polystirene colloidal crystals,'® ! synthetic opals?®® and even atoms trapped in opti-

cal lattices.?!22

If we limit ourselves to one-dimensional geometries, structures with periodicities
in the optical range are easily fabricated by means of molecular beam epitaxy (MBE)
techniques allowing for Bragg mirrors as well as single and coupled microcavities
to be grown; very recently, similar structures with periodicities as short as a few

nanometers are beginning to be used as mirrors in the soft X-ray domain.?

The analogy between the electrons in a crystalline solid and the photons in a peri-
odic dielectric structure can be further clarified by rewriting Maxwell’s wave equa-
tion in a dielectric medium in the following Schroédinger-like form:*

h? h?

2m062ﬁ(x> — hwle(z) — 1] E(z) — o

\Y [(ﬁ log e(m)) E(x)] = hwE(z); (1.2)

w is the photon frequency, E(x) the electric field and ¢(z) the local dielectric con-
stant; the mass m, has been defined according to m, = hw/2c. The first term of
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eq.(1.2) describes a sort of kinetic energy of the photon, which takes into account the
free-space photon dispersion; the second and third terms depend on the refractive
properties of the material medium. In particular, the former term can be interpreted
as giving a sort of dielectric potential Vy;,,

Viiale) = —hw [e(2) - 1]; (1.3)

to which photons are subjected. For the one-dimensional geometries which are mat-
ter of the following sections the electric field is everywhere parallel to the interfaces
between different materials so that the last term, which would otherwise couple the
spin and the translational degrees of freedom, results exactly vanishing.

The well-known total internal reflection at a dielectric-vacuum interface* can be
interpreted as arising from the dielectric potential Vy;; of eq.(1.3): if the longitudinal
kinetic energy of the photon in the dielectric material Awe cos? § is not large enough
for surmounting the potential step fuw(e — 1) with respect to external free-space, the
photon is reflected back. The condition for total internal reflection which follows
from this approach agrees with the usual condition sin®§ > ¢!

Fig.1.1 reproduces the band structures for a one-dimensional periodic system: the
calculations have been performed using the usual transfer matrix algorithm for the
propagation of linearly polarized electromagnetic waves at normal incidence in a

one-dimensional structure.*% If we denote as
E(.Z'7 t) _ Uleino(x—:co)w/ce—iwt + U2e—ino(z—xo)w/ce—iwt (14)

the resulting electric field of the two waves which propagate in respectively the
forward and backward directions inside a slab of material of refraction index n,, the
tield amplitude can be summarized in the two component complex vector

v:<”1). (1.5)

In this formalism, both the boundary conditions at the interface between two layers
with different refractive index and the propagation through an homogeneous slab
are described by linear matricial equations of the form

D))
Ué M21 M22 (%) V2
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In the first case, the transfer matrix M has the form

nitne  n2—ng
. — 2n2 2n2
Mmt - na—ni ni4no ) (17)
2n2 2n2

ni o being the refraction indices of the materials separated by the interface, while in
the other case, it has the form

ez’nwl/c 0
Mpr - ( 0 e~ inwl/c ) ’ (18)

In the next chapter (sec.2.3), this method will be generalized and applied to nonlin-
ear materials in which the refractive index depends on the local light intensity.

For each value of the frequency w, the wavevector of each mode k; is given by
A = el )\, being the eigenvalues of the 2x2 transfer matrix corresponding to
propagation along the unit cell. The real part of k; clearly refers to propagation,
while the imaginary one to extinction (and, eventually, absorption, if the lattice is

dissipative).?
2.5 3 ; 2.5
2 i
315 313
3 3
3! 3!
0.5 0.5
0 0
-1 -0.5 0 0.5 | 0 005 01 015 02 025 03
kL/ﬂ' kextL

FIGURE 1.1: Photonic structure of a one-dimensional periodic non-absorbing
structure composed of alternated n; = 3.5 and ne = 2.5 layers; di /d2 = 2/3.5.
The gaps open at frequencies which are integer multiples of the Bragg frequency
wpr. The presence of the second gap at 2wp, is a clear signature of non-\/4
layers. Left panel: photonic dispersion (real part of the wavevector). Right
panel: extinction coefficient (imaginary part).

For a two-layer unit cell of refraction indices n, » and thicknesses d; 5, the gap width
is generally an increasing function of the refractive index contrast, i.e. the amplitude
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of the modulation of the potential Vj;.;; for given values of n; 5, the maximal width
of the lowest gap is achieved in the case of \/4 layers, i.e. when din; = dony =
Agr/4. Unfortunately, symmetry reasons make this condition incompatible with the
opening of a second gap around 2wp,.

An effective mass can be defined for the photons at band edge according to the gen-

102w\
Meff = (ﬁ@) ; (1.9)

as in the electronic case, conduction band photons have a positive effective mass, while

eral rule

valence band ones have a negative mass; consequently, a defect which is attractive in
the sense of eq.(1.3), e.g. a more refracting layer, can bind conduction band photons,
while valence band photons are bound by repulsive defects, e.g. additional holes in

the material.l%11

1.2 The Distributed Bragg Reflector (DBR) as a one-

dimensional PBG

Consider a monochromatic light beam normally inciding on a finite slab of one-
dimensional PBG crystal; in fig.1.2 we have plotted the transmittivity as function of
its frequency wy,. Most of its features can be explained starting from the simple band
dispersion of the previous section.

If the incident frequency w;, corresponds to a forbidden gap, light can not propagate
through such a dielectric lattice and would be totally reflected back by an infinite
structure;* this because the photonic dispersion inside the PBG gives a purely imag-
inary wavevector for frequencies inside the gap. In the case of a finite sample, a
small part of the incident flux can instead tunnel across the system: the transmitted
beam has an intensity which is an exponentially decreasing function of the number
of periods of the structure with a characteristic length given by the inverse of the
extinction coefficient k.,;. Anyway, since absorption is absent, the process is purely
reactive and conserves energy; this means that the sum of the transmitted and re-
flected intensities exactly equals the incident one.

A similar extinction process occurs when light falls onto the interface between a
dielectric and the vacuum with an angle larger than the critical angle 6 > 6. =
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FIGURE 1.2: Transmission spectrum of a 10 periods PBG crystal. Same parame-
ters as in fig.1.1.

arcsin 1/4/e: in this case, the photon dispersion in free-space does not allow for prop-
agating states with a real wavevector if the transverse wavevector k; > w/c. Light
has therefore to be totally reflected at the interface, leaving only a non-propagating
exponential tail in the vacuum. If two dielectric bodies with parallel interfaces are
separated by a thin vacuum layer of thickness d, the tunneling amplitude for § > 6.,
has the same exponentially decreasing behavior as a function of d as the transmis-
sion through of finite slab of PBG. This effect is currently used in practice for tuning
the in- and out-coupling intensity of a whispering gallery dielectric resonator.?

If the frequency wy, corresponds to an allowed band, incident light couples to prop-
agating modes and can be transmitted across the lattice; as it happens for a finite
dielectric slab, the presence of an impedance mismatch at the abrupt interfaces of
the PBG crystal causes partial reflections and hence oscillations in the transmittivity
spectrum with a period inversely proportional to the lattice thickness.

Given their good reflection performances at frequencies lying inside an energy gap,
finite slabs of PBG are commonly used as high quality distributed Bragg reflector
(DBR) mirrors; in most cases, the lattice is formed by a stack of A\/4 layers tuned to
the desired frequency, in order to maximize both the extinction coefficient and the
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reflection spectral range at a given refraction index contrast. Other configurations
are sometimes adopted for specific purposes: doubly resonant second harmonic
generation, e.g., requires high reflectivity at both w; and 2w, which can not be ob-
tained with usual \/4 mirrors. A detailed discussion on such FASH (fundamental
and second harmonic) mirrors can be found in.?”

The materials most commonly used for DBR mirrors are certainly Al,Ga;_,As al-
loys, whose refractive index can be varied changing the relative proportion of Ga
and Al atoms from a value of about n41a5 ~ 2.95 up to a value of about ngaas =~ 3.56;
such materials allow in fact for an easy growth of the DBR mirror structure by means
of MBE techniques as well as for the integration in the same monolithic sample of
the electronic confinement structures, e.g. quantum wells, which are required in or-
der to have strong and sharp excitonic optical lines. Given the limited refractive in-
dex contrast of such compounds, other classes of materials are actually investigated
in order to get enhanced refractive index contrasts, e.g. II-VI inorganic semicon-

29,30

ductors, alternate layers of ZnS (nz,s ~ 2.3), MgF; (nygr, ~ 1.35) and organic

materials® as well as many others.?>*

1.3 The DBR microcavity

Consider now a pair of DBR mirrors separated by a dielectric layer of refraction
index n.q, and thickness d.,, grown on a substrate of refraction index n,,, as in
fig.1.3: such a system can be considered as an optical cavity, since light is confined in
the central cavity layer by the pair of mirrors which surround it. If the DBR mirrors
are formed by \/4 layers and the cavity one is a A/2 layer, the Fabry-Perot mode
has a frequency very close to the Bragg frequency wp,. Examples of transmission
spectra through such structures, calculated using the transfer matrix formalism, are
reproduced in fig.1.4).

For frequencies lying outside the reflection window of the DBR mirrors, there is
appreciable transmission since light can propagate through the whole structure. The
complicate modulation is the result of the multiple reflections at the interfaces and
can be interpreted in terms of the so-called leaky modes.>

For frequencies lying inside the gap of the DBR mirrors, transmission is nearly van-
ishing at all frequencies comprised within the forbidden gap of the DBR mirrors,
but for the narrow Fabry-Perot peak which corresponds to a resonant tunneling pro-
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FIGURE 1.3: Scheme of a DBR microcavity; the heights of the lines correspond
to the refraction index of the different layers.
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FIGURE 1.4: Transmission spectra of an empty microcavity. The DBR mirrors
are formed by 10 periods of a \/4 lattice; the cavity layer is a A/2 one. The Bragg
frequency is hwp, = 1.40eV; n; = 2.9, ny = 3.6, Ncqy = 2.9 and ngyp = 3.5.
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cess on the localized cavity mode: the peak center is at the mode frequency and its
linewidth v is given by the radiative lifetime v = 77'; this latter being proportional
to the (small) mirror transmittivity, the more lattice periods are present in the DBR
mirrors, the narrower is the resonance. In general, the sharpness of an optical reso-
nance is measured in terms of the quality factor Q, defined as the ratio Q = wy;, /7 of
the frequency and the linewidth; in physical terms it is equal to 27 times the num-
ber of oscillations required to damp the energy of a factor 1/e. Since the reflectivity
of DBR mirrors can be very close to 1, very high quality cavity modes should be
obtainable: experimentally, @) factors as high as 10* have been observed or, equiv-
alently, linewidths as narrow as 0.13meV.* Differently from the case of metallic
cavities, the transmittivity of DBR microcavities is smaller than unity even at exact
resonance with a FP mode because of the presence of the substrate material on just
one side of the structure.

The fact that DBR microcavities are monolithic objects is very interesting from the
point of view of the applications: the mechanically stable geometrical alignment
allows in fact for an easy manipulation; furthermore, the reduced volume of the
cavity mode, together with the possibility of integrating active layers such as quan-
tum wells in the same monolithic object, allows for the investigation of the physics

of strongly coupled photon-exciton systems.*”*

1.4 The DBR cavity as an impurity in a PBG crystal

The photonic mode localized inside the cavity by reflections on the two DBR mirrors
forming the microcavity can also be considered as a defect state in an otherwise pe-
riodic system: the two DBR mirrors surrounding the cavity layer can be in fact seen
as a single one-dimensional periodic array in which an extra layer with different
characteristics (the cavity layer) has been inserted, i.e. a doped PBG crystal.

Asitis well-known from semiconductor physics,”® when an impurity atom is present
in a otherwise periodic crystalline lattice, a localized defect state appears for carriers
at frequencies comprised within the gap between the valence and the conduction
band. Depending on the strength of the impurity potential, the defect state can be
either deep, if the carrier is tightly bound and the energy level is far inside the gap,
or shallow, if the carrier wavefunction is delocalized over many unit cells and the
energy level is close to a neighboring band. Depending on whether the sign of the
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electric potential is positive or negative, the defect can be respectively classified as
a donor or an acceptor: in the first case, the potential results attractive for positive
mass electrons and the energy of the bound state is located just below the conduc-
tion band; in the second case, instead, the potential results attractive for negative
mass holes and the energy of the bound state is located just above the valence band.

A similar behavior is expected to occur in PBG crystals when some dielectric mate-
rial is either added or removed at a certain location in the crys’cal:41 in the first case,
the extra dielectric generates a negative defect potential which can bind positive
mass conduction band photons; in the other case, the removed dielectric generates
a positive potential which can bind negative mass valence band photons.

Such a prediction can be immediately verified by simply calculating the transmis-
sion properties of a doped PBG crystal for different values of the thickness of the
central (cavity) layer d.,, A2 the energy of the defect state corresponds to the line-
center of the resonant tunneling peak.

0.40 : :
Undoped PBG
——- Donor
---- Acceptor
~ 030 | :
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FIGURE 1.5: Transmission spectra of microcavities for different values of the
cavity layer thickness; the DBR mirrors are A/4 mirrors, each formed by 10 pe-
riods of alternated n; = 2.9 and ny = 3.6 layers. The cavity layer (1.4, = 2.9) is
respectively a A/8 (acceptor), a A\/4 (undoped PBG) or a 3)\/8 (donor) layer.

For d.q, = d%,, = -—%—, the central layer is itself a A/4 one and therefore identical

2NcavWBr
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to its neighbors; in this case, the PBG crystal is not doped and the transmission
spectrum shows no resonant tunneling peaks. For d ., > d?

cav’

a transmission peak

appears just below the conduction band edge: it corresponds to resonant tunneling

(e}
cav’

on a donor impurity state. For d.,, < dZ,, the resonant tunneling peak appears
instead just above the valence band edge; it corresponds to an acceptor impurity
state. In both cases the distance from the band is initially an increasing function of
|deav — A2y |-

cav

Impurities have been studied extensively also in two and three dimensional PBG
crystals from both the theoretical and the experimental point of view; several au-
thors* ¥ have in fact shown that a localized addition of removal of dielectric ma-
terial in a slab of otherwise periodic photonic crystal provides localized photonic
states which can have Q-values as high as 10* and very tightly bound wavefunc-
tions, with mode volumes of the order of a few square or cubic wavelengths. As
expected, the coupling efficiency to externally incident fields decreases exponen-
tially with the distance of the impurity from the crystal surface, as it is expected for
tunneling on a localized mode.

1.5 Strong exciton-photon coupling effects in DBR mi-

crocavities

1.5.1 A simple two-mode model

Consider a single-mode DBR microcavity containing in the cavity layer a stack of N,,
identical quantum wells with strong electric-dipole excitonic transitions radiatively
coupled to the photonic mode of the cavity. Atlow excitation densities, when the
excitons can be considered as non-interacting bosons, such a system can be simply
modeled as a pair of coupled harmonic oscillators.

The Hamiltonian of such a model can be written in terms of the photonic and exci-
tonic field operators a,;, and G, as

H = hwpnlppn + Wesellyoliene + hkeal ) Gege + hE3AT, Gpn +
+ kineBinc(t)a)y, + Bk B (t)épn; (1.10)

the first two terms account for the linear oscillations of the photonic and excitonic
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cexc

tields respectively at w,, and we,.. The hkzcd;hdm +hk*al a,n, coupling terms respec-
tively describe excitonic stimulated emission and absorption processes from and
into the cavity mode; the coupling coefficient k. depends on the matrix element of
the excitonic transition and will be related in sec.1.5.2 to the excitonic contribution to
the macroscopic dielectric constant. Since only a specific linear combination of the
N,, excitonic states is effectively coupled to the photonic mode radiation while the
other N,, — 1 dark* states are not directly involved in optical processes, the exciton-
photon coupling strength for a stack of V,, equivalently located wells is proportional

to /N, 748

The hkincEmc(t)&;h + hk, Er (t)a,, term describes the effect on the microcavity of
an incident laser beam which forces the photonic cavity mode to oscillate. Thanks
to its all-order coherence, the incident laser field is well modeled as a classical C-
number field E;,,.(t). The coupling coefficient ;. is proportional to the transmission
amplitude of the front cavity mirror; analogously, the amplitude of the transmitted
field through the cavity Fj, is proportional to the internal photonic amplitude G,

times a 7, coefficient proportional to the transmission amplitude of the back mirror.

From the point of view of the sole microcavity, the coupling of the photonic mode to
the continuum of propagating external modes through the non-perfectly reflecting
mirrors as well as the exciton damping due to phonon and disorder induced scatter-
ing or ionization are dissipative processes and thus can not be included in a simple
Hamiltonian formalism. From the general theory of damping,'* it follows that the
dynamics of the two-mode system is completely described by the following master
equation for the density matrix p

op i, . A 14

o = 7 10+ D [ap] p+ YeweD lacac] o (1.11)
in which we have added to the usual Hamiltonian evolution terms which account
for the damping of respectively the photonic and excitonic modes

. A an Liv o o ot
Dlapn]p = aphpa;h D) <a;haphp + pa;haph> (1.12)
~ 1

Dlacrc) p = dezcradlmc ~ 5 (dlxcdezma + ﬁ&lxcdeasc> ; (1.13)

as usual, the coefficients 7, .. have the usual meaning of damping rates of respec-
tively the photonic and excitonic oscillations. If we define 7;,,. as the proportion-
ality factors between the cavity field and the emitted fields respectively in front and
behind the cavity, the contribution of radiative escape of photons from the cavity to
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the cavity damping can be written as

rad C
o = = (el + )5 (1.14)

in addition, the n;,. coefficient can be related @ to the coupling coefficient k;,. of the
incident beam to the cavity mode:

C

For a symmetric structure, 1;,. = n, and k;,,. = ki, and therefore

kine = /415 /¢ (1.16)

p
ne = \Jers @ /16m. (1.17)

Another contribution to ,, may arise from light absorption processes in the di-
electric material forming the DBR mirrors and the cavity layer. Exciton damping
is instead caused by phonon and disorder scattering or ionization. Since the decay

channels of the excitonic and photonic modes are expected to be distinct,®!

no cou-
pling of the excitonic and photonic modes is expected to arise from damping effects;
in other words, non-diagonal damping terms have not to be included in the master

equation eq.(1.11).

Inserting the explicit form of the Hamiltonian eq.(1.10) into the master equation
eq.(1.11), we can obtain a closed set of motion equations for the mean-values of the
field operators app ezc = (Aph cac):

d

Zih - _iwphaph - ikcaemc - §7phaph - ZkzncEmc(t) (118)
d exc . 7 %

adt —Wepcleze T ch Qph — 576:50@@%6; (119)

differently from the case of nonlinear optical systems treated in the next chapters,
the equations for the mean-field amplitudes are in the present case exact: the qua-
dratic form of the Hamiltonian eq.(1.10) guarantees in fact that the all-order coher-
ence of the incident laser beam is transferred to the cavity field as well as to the
excitonic field.

@This is easily proven by remembering that the transmission through any symmetric, linear and
non-absorbing structure is, at exact resonance, exactly one [50, chap.9]
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If the incident field is a monochromatic one E;,.(t) = E?, e *“L!, we can analytically

mc

tind the steady-state transmitted amplitude Ej.:
kz’ncntr Efnc

ES = (1.20)

ke[

wph o WL o 27ph/2 o Wezc_wL_i'Yezc/Q

In absence of photon-exciton coupling k. = 0, we recover the typical expression for
the single resonance of the bare cavity mode at w,;, with linewidth ~,.

In currently grown microcavities, the excitonic linewidth is generally comparable or
even larger than the photonic one: 7., > 7,»; in the resonant case A = weye—wpn, =0,
depending on whether 4 |k.| is smaller or larger than |Y.,. — 7,1|, we can be either in
a weak coupling regime or in a strong coupling regime. The transmission spectrum
shows in fact a pair of poles at the (complex) eigenfrequencies

2
~ . . + exc exc —
Wi = W12 — Y12 = Wph — Z% + \/|/€c\2 — (%) (1.21)

of the linear system eqs.(1.18-1.19). In the weak coupling regime, the real parts
of the poles, which define the resonance frequencies, coincide and are equal to
W12 = Wpn = Wege, SO that the transmission spectrum has a single peak at w,;,. In
the strong coupling regime, a doublet of Rabi-split peaks appears, symmetrically
located with respect to w,, = we,.. From a physical point of view, the doublet of
peaks arises from resonant tunneling processes on the two dressed eigenstates of the
cavity, the so-called exciton polaritons, which are linear superpositions of the exci-
tonic and photonic modes and can be determined from the diagonalization of the
cavity Hamiltonian eq.(1.10).

The transition from the weak to the strong coupling regime can be observed in
fig.1.6: transmission spectra for growing coupling strengths k. have been plotted
in the resonant case A = 0: the transition from a single peak to a doublet of peaks
is apparent. On the other hand, if we vary the detuning A in the strong coupling
regime, the polaritonic peaks show the typical anticrossing behavior of a coupled

two-modes system:%38:52

since only the photonic mode is actually coupled to the
incident and transmitted beams, the oscillator strength of each peak reflects the
weight of its photonic component. An explicit calculation in the optical Stark ef-
fect (OSE) regime in which the linewidths are negligible with respect to the Rabi
splitting {5, leads to the polariton frequencies

A (A A2A Qg
-4 = —_ 4 1.22
u}172 2 ( 4 + V{?c| ) 2 2 ( )
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FIGURE 1.6: Transmission spectra for different values of the exciton-photon cou-
pling k.. To clarify the picture, each spectrum has been shifted upwards of
0.25. The solid line refer to the empty cavity case k. = 0; a longer dashing
means a stronger coupling k.. The weak- to strong-coupling transition is evi-
dent. k¢/vpr = 0,0.5,1, 1.5; Yewe = Ypn, A = 0.

and to the oscillator strengths

w; — A

fl 6.8 ‘kincntr| ! (123)
w1 — W2
we — A

fo o< |Kinetr] ———, (1.24)
W — W1

where the oscillator strength of a peak is defined as the integrated intensity of its
lineshape.

Such a behavior can be observed in the spectra of fig.1.7, in which transmission
spectra for different values of A have been plotted in the strong coupling regime.
For A = 0, the peaks are located at symmetrical positions with respect to w,, = Weze
and have equal strengths. For A < 0 the weak lower peak, mainly excitonic, is
located just below w,,. while strong upper peak, mainly photonic, is located just
above w,,; the redistribution of the oscillator strength, as well as the frequency shift
from the bare frequencies w,,. and w,), are a consequence of the coupling which
mixes the exciton and photon states into polaritonic ones. A symmetric behavior
occurs for A > 0.



Linear optics of semiconductor DBR microcavities

27

1.75

‘a\, 15 ,\\
= 125 KRN
E ] S alS _—’/ \“----
S 05 hay
g 0.25 ,I \

0 ---———’ \\----_-"~~__

-4 -2 0 2 4

(WL =Wpn)Y ph

FIGURE 1.7: Transmission spectra for different values of the exciton-photon de-
tuning A. To clarify the picture, each spectrum has been shifted upwards of 0.5.
The solid line refers to the resonant case A = 0; the dashed lines refer to the

symmetric A/vy,, = £2 cases; anticrossing behavior is apparent. Veze = Ypn,
kc / Yph = 2.

1.5.2 An ab initio calculation via transfer matrices

The predictions of the previous subsection are based on a simple two-mode model
which takes into account only one photonic and one excitonic mode. Now, we shall
check their validity by comparing them to the predictions obtained by integrating
Maxwell’s equations for the electromagnetic field in the dielectric structure. This
can be done within the transfer matrix formalism*® already used in the previous
sections; the quantum wells can in fact be modeled as very thin layers with a Drude-
Lorentz dielectric constant

dme? FeD

cqw(w) = 0(z — zqw); (1.25)

2 2 ,
m Wepe — W — WezeW

as an example, for 10nm wide InGaAs quantum wells, the 2D oscillator strength
£2P) has a value of about 5 - 10~44-2.53

Performing such a calculation for the structure described in sec.1.3 when a few
quantum wells are inserted in the cavity layer brings to the transmission spectra
of fig.1.8, which closely resemble the ones already obtained within the simple two
mode model.

The oscillator strength of the quantum well exciton F527) to be used in the transfer
matrix calculation can be either experimentally measured™ or theoretically com-



28

Semiconductor optics

0.30 0.25
_  0.20
2 020 2

S = 015
E E

S o010 S

e ~——- e 0.05 | o N )
0.00 : : : 0.00 L : : : -
1.390 1.395 1.400 1.405  1.410 1.380 1.390 1.400 1410 1.420
 (eV)  (eV)

FIGURE 1.8: Transmission spectra through DBR microcavities containing an ex-
citonic resonance: each DBR is formed by 10 periods of A/4 PBG with ny 3 =
2.9,3.6 and the cavity layer is a A\/2 layer with n., = 2.9, giving a cavity
mode close to 1.40eV. The excitonic linewidth Ave,. = 0.01eV is comparable to
the cavity linewidth. Left panel: resonant case for different excitonic oscillator
strengths. Right panel: anticrossing of photonic and excitonic modes during a

scan of fiwege = 1.395,1.4,1.405eV. In both panels, each curve is shifted upwards
of 0.05.

puted starting from the electronic structure of the well.® On the other hand, the .
coefficient of the two-mode model summarizes information on the geometry of the

whole cavity system and, in particular, on the wavefunction of the photonic cavity
mode.

Given any linear and non-absorptive dielectric profile ¢(z), the electromagnetic field
can be developed in eigenmodes of the wave equation

E(z,t) =Y &E(x)a;(t)e ™" + & (x)a; (t)e™; (1.26)
if we choose the normalization
T

the field intensities |a;|” get the meaning of photonic surface density.

In the so-called SVEA (slowly varying envelope) approximation which consists of
assuming a temporal variation of the mode amplitudes a;(t) much slower than the
free oscillation frequency w;, the time evolution of the mode amplitudes [6, pag.216]
can be written as

4 O*P(x,t)
& o

ie(x)w; da; |
Z ZE(.CE)WZ da’l gi(x)e—zwit _

1.28
c? dt ( )

%
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where the polarization P(z,t) contains contributions from all processes which have
not been included in the background dielectric constant ¢(z), i.e. all nonlinear ef-
fects, as well as our resonant excitonic polarization.

Multiplying both members of eq.(1.28) by £;(x) and integrating over dx, the modes

result separated
.da;

]
dt
within the SVEA approximation, only the terms which oscillating at a frequency

- _ /dx EX(x)4nP,, (x); (1.29)

close to the mode frequency w; have to be kept in the right-hand sides of the motion
equations eq.(1.29).

In our specific case, only one photonic mode a,, is involved and the polarization
P(z) contains the excitonic contribution only; assuming monochromatic oscillation
at wy, this can be written as

4me? cch)
AP, (@) = eqw (2)Epn(@)ap = — P —— Epn(row)apn  (1.30)

leading to an excitonic term in the motion equation for the photonic field amplitude
app, of the form

. daph

dt

62 o(ch) )
=— \Epn(Tow)|” | apn- (1.31)

42 2 .
MW, — Wi — Ve

On the other hand, the excitonic polarization introduces in the photonic motion
equation of the two-mode model a term
e Weae [kel

=— Qph, Aph; (1.32)

- . ph — 2 2 .
Wege — WL — Zf)/exc/z Wepe — WL — WezeWL

. daph

T

exc

comparing the photonic motion equations eq.(1.32) and eq.(1.31) of the two ap-
proaches, an explicit expression for k. can be obtained in terms of the quantum
well oscillator strength and the photonic wavefunction &,,(x)

2
e
|ke|* = mfﬁf) Epn(zow)[*; (1.33)

the phase of k. refers to the (generally unobservable) absolute phase of the excitonic
field and can be arbitrarily chosen without affecting the physical predictions.

More generally, if the cavity contains several quantum wells located at different
spatial positions, |kc|2 is the sum of the contribution of each single well; if the well
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spacing is much shorter than the photonic wavelength, or the wells are located at
equivalent positions within the cavity layer, the effective coupling k. results pro-

47,48

portional to the square root of the number of wells, as expected from general

arguments starting from the concept of bright and dark states.

1.6 The microcavity polaritons: quantum coherence ef-

fects in the transmission spectra

Although the largest part of the works that have appeared up to now on micro-
cavity optics refer to the 7.,. > 7,5 case, very interesting behaviors are expected to
occur in the opposite 7,;, > 7z case. From an experimental point of view, very
narrow excitonic transitions can be obtained by working at low temperature with
high-quality quantum wells with a very small interface roughness. As previously
stated, control over the cavity linewidth is instead obtained by simply varying the
number of lattice periods in the DBR mirrors.

In the deep strong coupling regime, when the Rabi splitting of the poles is much
larger than both their linewidths, the physical behavior is the same as the one de-
scribed in the previous section and the polaritonic peaks have a linewidth which is
the average of the excitonic and photonic linewidths.”

When the strength k. of the exciton-photon coupling is intermediate between the
photonic and the excitonic linewidths, qualitatively new features in the transmis-
sion spectra are predicted by the same eq.(1.20):

All the spectra plotted in fig.1.9 show a broad peak centered at the photonic mode
frequency w,;, and, superimposed, a narrow feature around w.,., whose qualitative
shape strongly depends on the detuning A; the width of the narrow feature can be
as small as the excitonic linewidth ...

In the resonant A = 0 case, the transmitted amplitude eq.(1.20) can be approximated
in the |w;, — Weze| € Ypn Window as

. 4k
E° = kel E° L Ve (1.34)
tr zncntr inc 'th/z Wepe — W], — ’LF/2 ) .
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FIGURE 1.9: Transmission spectra in the vy, > Yeze = 10_27;);1 case. Left panel,
resonant A = 0 case; k./vpn = 0,0.05,0.1; each of the curves is shifted upwards
of 0.2. Right panel, non-resonant A /v, = 1 case; kc/vpn = 0,0.25.

where the linewidth I" of the narrow central feature is defined as

4k
T = oo | 1+ kel ) (1.35)
YphVexc

Such a lineshape corresponds to a very flat and broad pedestal with a narrow hole
at we,. of linewidth I' whose visibility is given by

Emaz| _ | pmin 4|k, 2 1
6 — ‘ tr maL tr — | | _ T (1.36)
‘EtT ’YPhF 1 + 4|kc|2
Depending on the value of the adimensional parameter n = 4 \k:c\z /YphYezer the

linewidth I' can be as small as v.,., provided n < 1; in this limit, however, also
its visibility results very small. In the opposite limit > 1, the transmission at
Weze Tesults almost vanishing, but the dip linewidth becomes large and equal to
4 |kc\2 /Yph => YVexe- The narrow dip which appears in the intermediate regime 7 ~ 1
is strictly related to the well-known electromagnetically induced transparency (EIT) of
coherently driven three-level atoms:***” as in the atomic case the excitation is co-
herently trapped in a metastable state so that absorption is effectively canceled out,
in our microcavity system the incident laser drives both polaritons in a coherent
way with a well-definite relative phase in such a way that their superposition has
a nearly vanishing photonic component for w; = wp,. Since the transmitted ampli-
tude is proportional to the photonic component of the excitation, the transmission
spectrum shows a dip around w,, whose narrow linewidth is a consequence of the
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strong dependence of the relative phase of the two polaritons on the laser frequency
wr,.

In the case of a finite detuning A, the transmission amplitude in the |w;, — Wese| <
7pr limit can be approximated by

o _ Konce B, (1 . L ) | (137)

z Weze = WL = 1Yeac — [kel™ /2
where z = A + iv,,/2; as expected, for A = 0 we have z = iv,,/2 and eq.(1.34)
is recovered. This lineshape corresponds to a very broad pedestal (whose slope
is not included in the approximate expression), with superimposed a dispersion-
like curve centered at a frequency close to we,.; the transition from a simple dip
to a dispersion-like curve is controlled by the argument of the complex number z,
which is purely imaginary for A = 0 and real in the A > ~,,, limit. In the former
case, the broad pedestal interferes with the imaginary part of the resonant second
term, giving a dip-like shape; in the latter case, the broad pedestal interferes with its
real part, giving a dispersion-like shape.
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FIGURE 1.10: Transmission spectra through DBR microcavities containing a nar-
row excitonic resonance: each DBR is formed by 10 periods of A/4 PBG with
ni,2 = 2.9, 3.6 and the cavity layer is a A/2 layer with n.., = 2.9, giving a cavity
mode close to 1.40eV. The excitonic linewidth Ay, = 0.1meV is much smaller
than the cavity linewidth. Left panel: resonant case for different excitonic os-
cillator strengths; each curve has been shifted upwards of 0.05. Right panel:
non-resonant case hweg,. = 1.405eV.

A physical interpretation of such lineshapes can be put forward in terms of Fano in-
terference profiles'** in the transmission process: this can in fact be interpreted as a
quantum-mechanical transition from a state in which there is a photon in front of the
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cavity to the continuum of states in which there is a photon propagating beyond the
cavity. Since such process can occur along two different paths, quantum mechanical
interference between the two amplitudes occurs, which causes the appearance of
the peculiar features in the transmission spectra.

As in the previous section, we can compare the predictions of the two mode model
to the predictions obtained by direct integration of Maxwell’s equations: the agree-
ment of the two approaches is apparent from fig.1.10, giving further evidence to the
validity of the two-mode model.

1.7 Linear optics of coupled microcavities

In the last years, several authors have considered the more complicated configu-

ration of fig.1.11, in which two DBR microcavities are grown on top of each other

sharing the central mirror.®*

GaAs GaAs GaAs
AlAs AlAs Substr.
L AlAs
T 1% cdv.lay. 2™ cdv.lay.
Vacuum

FIGURE 1.11: Scheme of a coupled DBR microcavity configuration; the heights
of the lines correspond to the refraction index of the different layers.

Given the finite transmittivity of the central mirror, generally less reflecting than the
external ones, the optical modes of each cavity are coupled to each other by tunnel-
ing processes through the central mirror, so that the system behaves according to
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the same coupled two-mode mode used in the previous sections. In that case, the
resulting eigenmodes were polaritons, i.e. coherent superpositions of excitonic and
photonic modes; now, they are delocalized optical excitations which involve the two
cavities at a time with a well-definite relative phase.

In order to check the validity of such a description, we have numerically calculated
the transmission spectra through coupled cavity systems using the transfer matrix
formalism.** As it can be observed in fig.1.12, the behavior is the expected one:
in the left panel, the two single cavity modes are resonant with each other and the
transmittivity of the central mirror is varied by tuning the number of lattice periods
of the central DBR mirror: the spacing of the transmission peaks results a strongly
decreasing function of the number of periods, i.e. an increasing function of the
central mirror transmittivity.

In the right panel, we keep a constant coupling, while we vary the detuning of the
single cavity modes by changing the thickness of the cavity layers: while one of the
cavity modes is swept across the other, the two transmission peaks show the typical
anticrossing behaviour of coupled two-level systems.
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FIGURE 1.12: Transmission spectra for coupled microcavity systems. Left
panel:resonant case for different numbers of lattice periods in the central mir-
ror N. = 5 (solid), 10 (dashed) and 15 (dot-dashed). Right panel: the cavity
modes are detuned from each other. The external DBR mirrors contain 15 peri-
ods; all mirrors are formed of alternating n; 2 = 2.9,3.6 A\/4 layers. The system
is grown on a ns,, = 3.5 substrate.

Such coupled cavities systems can be further complicated adding a few quantum



Linear optics of semiconductor DBR microcavities

35

wells in one or both the cavity layers: if the excitonic frequencies are close to the
cavity modes and the coupling is sufficiently strong, the resulting eigenstates of the
system are complicated linear combinations of the different excitonic and photonic
modes and each eigenstate corresponds to a resonant tunneling peak in the trans-
mission spectrum. For the interested reader, a more detailed discussion of such
systems can be found in ref.61, 62.
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Chapter 2

Nonlinear optics of microcavities I:
intensity-dependent refractive index

The discussion of the linear optical properties of DBR microcavities contained in
the previous chapter is the starting point of the present chapter, which is focussed
on the nonlinear optical effects which arise in a microcavity geometry from a spa-
tially distributed intensity-dependent refractive index. In the presence of such a
nonlinearity, the spectral position of the main features of the transmission spectrum
depends on light intensity as well as the effective transmittivity at a given frequency.
In other terms, the transmission of a beam suffers a feedback from optical nonlinear-
ity which can be either negative or positive; depending on this sign, optical limiting
or optical bistability effects can be observed.

Sec.2.1 will review the simplest case of a metallic mirror cavity filled of a nonlinear
material and sec.2.2 will present a simple analytical single-mode model which well
reproduces the underlying physics and can be applied to any geometry, all the infor-
mation on the detailed structure being summarized in a few parameters which can
be computed from the photonic structure at linear regime and the nonlinear optical
susceptibility of the material medium.

In the following sections, we shall describe the predictions of numerical simula-
tions for a few specific DBR microcavity configurations: sec.2.3 and sec.2.4 discuss
the case of a single cavity; a generalization of the transfer matrix algorithm to non-
linear systems has been used for the calculations. If parameters are appropriately
chosen, optical bistability and optical limiting are obtained, in agreement with the
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single-mode model. When a quantum well is inserted in the cavity layer in such
a way its excitonic transition is strongly coupled to the cavity mode, the interplay
of nonlinearity and Rabi splitting gives rise to peculiar features that can be well
explained by a two-mode model with intensity-dependent parameters.

In sec.2.5, a more complicated two-beam configuration is considered, in which the
refractive index profile of the system is modified by a strong pump beam and then
probed by another weak probe beam; in this sort of optical transistor, the intensity of
the pump beam (the base current) controls the transmission of the probe (the collec-
tor current). Unfortunately, the operation of an optical transistor based on a single
nonlinear DBR microcavity requires the probe beam to be much weaker than the
pump one, so that its amplification properties are not well suited for applications.

In sec.2.6 a possible way to overcome this difficulty is discussed, using the coupled
nonlinear DBR microcavities introduced in sec.1.7 instead of a single cavity; in this
case the system really behaves as an optical transistor, since a rather weak pump
beam is capable to modulate a stronger probe beam and hence amplify the carried
signal. As the only limitation of this arrangement, the probe beam has to be slightly
red-detuned with respect to the pump one.

2.1 The nonlinear Fabry-Perot interferometer

Consider a pair of metallic plane mirrors of reflectivity R,, < 1 separated by a slab
of thickness d of a non absorbing material whose refractive index n.;; depends on
the local light intensity.

In fig.2.1 we have plotted the transmission spectrum of such a cavity at linear regime:
[inc

[r = ;
T L+ 4/T2 sin? 0y, /2

(2.1)
d1in is the (linear regime) round-trip phase shift 6;;,, = 2ny;,,wd/c and T,,, is the trans-
mittivity 7,,, = 1 — R,, of the mirrors.

Resonant tunneling peaks occur at the FP mode frequencies

(j+1) (2.2)

e

nlz’nd

and have linewidths given by
cT,

nlind

v = (2.3)
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FIGURE 2.1: Transmission spectrum of a non-absorbing FP cavity at linear
regime. The longer the dashing, the smaller the mirror transmittivity 75,.

Since I;;,; = I1,/T,,, the internal intensity at resonance is generally much larger than
the incident one for sufficiently good cavity mirrors, making optical cavities use-
tul devices for the observation of nonlinear optical effects. In this case, we have
to substitute in eq.(2.2) the effective refractive index corresponding to the internal
intensity I;,,;; assuming, for simplicity

Nefr = Niin + fbnl]mt. (24)

the effective round-trip phase shift can be written as

2d,
5eff = 5lin + 5nl = 5lin + %ﬁnl[int- (25)

Inserting such a result into eq.(2.1), we are led to the final constitutive relation for
the nonlinear FP cavity:

L, 1

Lne 144/T2sin?6.57/2

(2.6)

which can be analytically studied [63, pag.268]. In particular, for high enough inci-

dent intensity
At nj, 7 _ 4rnl 2.7)
3\/§ ﬁnl w% 3\/§ﬁle2

several solutions to eq.(2.6) are possible and the system shows optical multistability.

Iz'nc > ]thres -
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In physical terms, the effect of the nonlinearity can be interpreted as a frequency
shift Aw of the cavity resonance from its linear regime frequency wpp equal to

Aw _ _ﬁnl]int _ 2wnl]mt (2 8)

Wrp Niin Wrp

which explains the proportionality of the threshold intensity I;,.s on the square of
the linewidth ~: one factor of 7 comes from the sharpness of the spectral features
with respect to frequency shifts (i.e. d7/dw), while the other one from the resonance
enhancement of the internal intensity with respect to the incident one.

Depending on the relative sign of the nonlinear refractive index 7,,; and the inci-
dent frequency wy, it is possible to achieve both optical limiting and optical bistability;
assuming for simplicity n,; < 0, as in most semiconducting materials at frequen-
cies below the electronic band gap, the sign of the nonlinear frequency shift will be
positive Aw > 0.

If the incident frequency is located just above a resonance peak, the nonlinearity
will push the resonance peak closer to the incident frequency and the transmittivity
will be reinforced: such a positive feedback can eventually lead to optical bistability.
On the other hand, if the incident frequency is already on the resonance peak or is
located just below it, the nonlinearity will push the resonance peak further away
from the incident frequency, giving a negative feedback on the transmission and,
consequently, an optical limiter behavior.

In fig.2.2 we have plotted a few examples of characteristic I; vs I;,. curves for both
optical limiting and optical bistability cases; in this second case, the central branch,
characterized by a negative value of the differential transmittivity dI;/dl;,. corre-
sponds to unstable fixed points of the dynamical system and can not be explored
experimentally in a continuous wave (cw) experiment.

All such results are summarized in fig.2.3, which shows the transmitted intensity
I, spectra as function of the incident frequency w;, at different values of incident
intensity I;,.; white regions correspond to unstable solutions. Bistable behavior is
here described by a triple intersection of one of the fixed I;,,. curves with the vertical
line defining w;,; the two external intersections are stable, while the central solution
lies always in the instability region which is under the tilted resonance peak.

If the mirror reflectivity is high enough for the resonance peaks to be well spaced
from each other and we limit to the case of nonlinear shifts much smaller than the
mode spacing, the sine in the denominator of the right-hand side of eq.(2.6) can be
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FIGURE 2.2: Characteristic I; vs. I;,. curves for different values of incident
frequency wy,/wpp = 0.97,1.00,1.03,1.06. Notice optical limiting for w;, < wgp
(the longer the dashing, the lower the frequency) and optical bistability for wy >
wpp (solid line).
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FIGURE 2.3: Transmitted intensity I; spectra for different values of incident
intensity I;». as a function of the incident frequency wy. The grey scale cor-
responds to the incident intensity: lighter shadowing means higher intensity;
white regions correspond to unstable behavior.
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linearized around an effective resonance at wrp + 2w, Lin:

[tr _ 72/4 (2 9)
Line  (wp — wrp — 2w lin)” +72/4

In physical terms, this is equivalent to stating that only a single resonance is effec-

tively relevant to the transmission of the cavity, while the others are too far detuned
to contribute. On the other hand, if the intensity is so large that the nonlinear shift
becomes comparable to the mode separation, several optical limiting stages alter-
nated to multistability loops can be observed for increasing I;,,..

2.2 The single mode model

Starting from the discussion of the previous section, we can try to develop a model
which from the beginning takes into account only a single mode of the cavity and
introduces the nonlinearity simply as a dependence of the mode frequency on light
intensity.

In analogy to what has been done in sec.1.5.1, we can describe the conservative
dynamics of the cavity with an Hamiltonian of the form

H = hwoia + hwydlalad + hkipeEine(t)at + bk, Er . (t)a (2.10)

me—inc

in which the nonlinearity is taken into account by the quartic term hw,,;a'a'aa which
gives a nonlinear shift Aw = 2w,,;a'a of the cavity mode frequency. Cavity damping
is described by damping terms in the master equation for the density matrix of the
cavity field.

As we have done in sec.1.5.2 for the exciton-photon coupling coefficient, the nonlin-
ear coupling w,; can be expressed in terms of experimentally accessible properties of
the cavity, such as the nonlinear susceptibility of the material and the wavefunction
of the photonic mode at linear regime.

The nonlinear polarization term appearing in the SVEA motion equation eq.(1.29)
for the cavity field is easily written in terms of the nonlinear dielectric constant y
(or equivalently the nonlinear refractive index n,; = ﬁRe [X] (3)); from such a cal-
culation, a simple expression for the nonlinear frequency shift in terms of the wave-
function £(x) of the photonic mode can be obtained

3 mn
ont = g5 [do E @I == [ do |2@)| (o) @)
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such an expression can be used to determine w,,; of any actual dielectric structure.

For the most relevant case of a metallic plane-mirror cavity, the wavefunction £(z)
has a standing wave profile

4rhw,

€0 =\ 5,

sin [nynwor/c] (2.12)
where ny;, is the linear refractive index of the material and d is the cavity length;
in order to give to the quantity (a'a) the meaning of photon number, eq.(2.12) has
been normalized in a three-dimensional way, assuming a transverse area S for the
cavity mode. Inserting this expression into eq.(2.11), we recover the result eq.(2.8),
which gives further evidence to the validity of the single-mode model.

Since optical nonlinearities in current semiconducting materials usually require a
large number of photons to be present in the cavity mode in order to have an appre-
ciable nonlinear modulation of the transmittivity, a mean-field (MF) approximation
can be performed. This approximation, which corresponds to replacing all oper-
ators with their mean values and assuming all operator products appearing in the
motion equations to be factorizable, is equivalent to using classical rather than quan-
tum electrodynamics and is valid in the limit of high photon number {(afa) > 1. A
detailed discussion of the validity and the limitations of MF theory will be given in
chap.6.

In this mean-field approximation, the operator-valued master equation is replaced
by a simple ordinary differential equation for the field mean value a = ()

da 1
i = —iwea — 2iwy la)*a — 5ot = ikine ine(1); (2.13)
unlike for the case of the exciton-photon coupling described in sec.1.5.1, this evo-
lution equation is now only an approximation, since for its derivation we have as-
sumed

(a'aa) = |a|* a; (2.14)
as we shall see in detail in chap.6, the weaker the nonlinearity w,,;, the better the
approximation.

In the case of a monochromatic excitation E;,.(t) = E.(O)e"'“’Lt, if we switch to a slow

wmc

variable b(t) = a(t)e™*!, we are led to a homogeneous equation

db

1
i —i (W, — wo — 2wy \b|2) b— ivphb — thincEo (2.15)
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which has a stationary state b,, as a long time limit

bkmcE‘(O)
bss = - : - 2 ! (216)
Z<WL—WO_2Wnl|bss| ) _7ph/2

From the point of view of the physical field a(t), the steady-state corresponds to a
monochromatic oscillation of the cavity field at wy,

s (t) = by ™EL, (2.17)

Since the amplitude of the transmitted field is proportional to the internal field
E,f,‘f) = Nubss, €q.(2.16) can be used to characterize the transmission properties of
the cavity as function of both the incident frequency w;, and the incident intensity;
in this way, the result eq.(2.9) is immediately recovered as well as all its physical
predictions, such as optical bistability and optical limiting.

The stability of each of the steady-states of eq.(2.16) can be determined using clas-
sical linearization techniques: dynamical stability requires all eigenvalues of the
linearized system to have a negative real part. In our specific case, the linearization
of eq.(2.15) around a steady-state b = b,, leads to an equation of the form

06b 9 1
= * oy n0b; 2.1
; 366 2’yph(5b, ( 8)

switching to the b, §0* basis, the characteristic equation of the linear system has the

—i (wp, — Wo) 0b — diwyy |bss|” 6b — 2iwb

s

form
2
()\ + 7ph/2)2 + (LdL — Wpp — 4wnl |b35|2> — Qqul ‘b35|4 =0. (219)

Imposing that both eigenvalues have a negative real part leads to the condition

2
<2wnl |bss‘2)2 - (WL — Wrp — 4wnl |bss‘2)2 < %a (220)

which can be shown to be equivalent to the usual one

dl;
dlz'nc

which has been used for determining the stability region in fig.2.3.

>0 (2.21)

2.3 The nonlinear DBR microcavity

As we have seen in the previous section, all the qualitative features discussed in
sec.2.1 for the case of a metallic mirror nonlinear Fabry-Perot interferometer charac-
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terize the behavior of any nonlinear system which can be described by the single-
mode model.

The DBR microcavities of sec.1.3 fall in this category, since they show well separated
optical modes and the relatively large nonlinear polarizability of the semiconduct-
ing material can provide an appreciable nonlinear shift of the cavity mode.** This
suggests that a numerical integration of the nonlinear wave equation for the elec-
tromagnetic field should give results in qualitative agreement with the predictions
of the single-mode model. In order to do this, a direct generalization of the transfer
matrix algorithm*? to systems with an intensity dependent refractive index can be
used:? the structure is divided in layers much thinner than the wavelength in the
material so that the light intensity can be considered as constant within each layer;
at each step, the local refractive index is determined using the refraction index value
which corresponds to the local value of the light intensity and then inserted in the
standard transfer matrix algorithm.

Since the main room-temperature nonlinear susceptibility of semiconducting ma-
terials come from the excitation of free pairs and the consequent reduction of the
refractive index by electron-hole plasma and Pauli exclusion principle effects, the
closer is the operating frequency to the gap edge, the stronger the absorption and
therefore the effective nonlinear susceptibility.>®¢" This means that both the re-
fractive index, the absorption and the nonlinear susceptibility can all be controlled
by tuning the energy gap position by means of the chemical composition of the
material. In the most relevant case of Al,Ga(,_,)As alloys, a larger amount of Al
atoms corresponds a larger energy gap and therefore the optical nonlinearity is the
strongest in pure GaAs layers.

In tab.2.1, we have summarized the experimental values® ¢

actually used in nu-
merical simulations; although the refractive index variation following the presence
of excited carriers can be somewhat varied by tuning the operating frequency closer
of further from the energy gap, the strongest frequency dependence of the nonlinear

susceptibility comes from the frequency dependence of absorption.

In the actual simulations, we have assumed a functional dependence of the refrac-

tive index on intensity of the form:

mazx I/Isat

2.22
14+ 1)1 ( )

Neff = Niin + 0N

with the frequency-dependent parameters ny;,,, 0n™*" and I, which have to be fitted
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GaAs Refractive index n 3.6
Absorption coefficient k ~ 0.001

Gap energy E, 1.425 eV

Carrier saturation density N ~ 10" cm™3

Nonlinear variation refractive index jn™* ~ —0.03

AlAs Refractive index n 2.95
Absorption coefficient k ~ 0

AlGaAs | Refractive Index n 3.6>n>295
InGaAs | 2D Oscillator strength f,.. 5-1074A2
Quantum | Resonance energy FEj 1.415 eV
Well Linewidth I’ 1 meV
Carrier saturation density Ny ~5-10" cm ™2

TABLE 2.1: Summary of experimentally determined®®® optical constants of
GaAs based materials.

on experimental data.

Since the optical modes of a DBR microcavity are not confined in the cavity layer, but
do penetrate also inside the mirrors, we expect that a nonlinear polarizability local-
ized in the cavity layer should be less effective than a nonlinearity distributed along
the whole structure; this guess has been verified studying the transmission prop-
erties of two different structures. In the first case the external mirrors are formed
of non-absorbing wide gap AlAs/AlGaAs layers, while the cavity layer is formed
by a strongly nonlinear GaAs layer; in the second case all the system is nonlinear,
being formed by AlGaAs/GaAs mirrors with a GaAs cavity layer. As expected, the
nonlinear mode shift results much larger in the second case, while it is very small in
the first case (fig.2.4); as usual, the mode shift leads to optical bistability or optical
limiting effects depending on the relative position of the incident laser frequency
and the cavity mode.



Nonlinear optics of microcavities I: intensity-dependent refractive index

47

0.01 0.01

0.001 0.001

Transm.Int. I,
Transm.Int. I,

1.395 140 1405 1.41 1395 140 1405 141

Energy Energy

FIGURE 2.4: Simple nonlinear DBR microcavity: transmitted intensity I;, spec-
tra at different values of the incident intensity I;,.; the grey scale corresponds to
the incident intensity: lighter shadowing means higher intensity. Transmitted
intensity is measured in kW/cm?; energy in eV. Left panel: nonlinearity concen-
trated in the cavity layer; Right panel: nonlinearity distributed along the whole
structure.

2.4 Nonlinear DBR microcavity containing excitonic res-

onances

The nonlinear frequency shift of a cavity mode described in the previous sections
can be exploited to vary in an all optical way the detuning of the cavity mode with
respect to an excitonic resonance to which it is strongly coupled” and therefore
observe an anticrossing behavior which should closely resemble the one depicted in
fig.1.7.

Provided the excitonic resonance is not yet bleached at the large light intensities
which are required to shift the cavity mode across the excitonic resonance, the trans-
mission spectra are characterized by the peculiar structures reproduced in the left
panel of fig.2.5. At low light intensities, the photonic mode is on the red side of the
excitonic transition, while it is shifted on its blue side at large intensities; in between,
the two modes are strongly mixed.

Such a behavior clearly relies on the assumption that the excitonic saturation den-
sity is much larger than the excitonic density which is generated by the strong laser
beam at the intensities which are required for the shift of the photonic resonance.
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FIGURE 2.5: DBR microcavity containing a few quantum wells: transmitted in-
tensity I;, spectra at different values of incident intensity I;,.. The grey scale
corresponds to the incident intensity: lighter shadowing means higher inten-
sity. Transmitted intensity is measured in kW/cm?. Left panel: the cavity mode
is swept across an unbleachable excitonic transition by the optical nonlinearity.
Right panel: the photonic mode does not appreciably shift while the exciton is
bleached.

Unfortunately, neither InGaAs quantum well excitons nor bulk GaAs excitons can
be used for such purpose, since their large Bohr radii reflect into a rather low sat-
uration density.®® The same electron-hole plasma which is responsible for the non-
linear polarizability of the dielectric medium is in fact able to bleach the excitonic
transition in the quantum well. On the other hand, organic semiconductors, hav-
ing excitonic states much more localized in space, may be good candidates for the

observation of such effects.”! 72

However, as it has been already pointed out by several authors, the nonlinear prop-

7 or atomic™ transition strongly coupled to a pho-

erties of a bleachable excitonic
tonic resonance can lead to interesting patterns in the nonlinear transmission spec-
tra as well. In the right panel of fig.2.5 we have reproduced a typical example of
such effects: the excitonic and photonic modes are initially at resonance and the
frequency shift of the optical mode is assumed to be still very small at the light

intensities which are required for the bleaching of the excitonic resonance.

As it has been done for the simple nonlinear cavity, the study of such systems can
be performed in terms of simple effective Hamiltonians which generalize eq.(1.10)
adding appropriately chosen nonlinear terms. For the description of the nonlin-
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ear shift of the photonic mode across the excitonic mode, it is sufficient to add the
usual term hw,,;a'a’aa to the Hamiltonian eq.(1.10). Exciton bleaching at densities
of the order of the saturation density n, is instead well described by an intensity-
dependent exciton-light coupling

pleff) — _ Tsat g (2.23)

‘ Nsat + |aegvc|2 ‘

in the motion equations egs.(1.18-1.19).

2.5 Two-beam nonlinear interactions: pump and probe

optics and optical switching

In the previous sections we have discussed the effect of an intensity dependence of
the refractive index on the transmission properties of a single beam; the resulting
feedback on the transmittivity can result either positive or negative, depending on
the details of the configuration and the operating frequency; in particular, optical
bistability can be observed in the former case, while optical limiting can be observed
in the latter case.

The present section is devoted to the analysis of the effect of a, generally strong,
pump beam on the transmission of a second, generally weaker, probe beam. At the
simplest level, the nonlinear interactions of the two beams can be described in the
following way: the pump beam creates some excitation in the material, e.g. free
electron-hole pairs, the presence of which modifies the refraction index profile expe-
rienced by the probe beam as well as by the pump beam itself. Since the probe beam
is assumed not to be coupled to the optical polarization created by the pump beam
but only to the produced excitation density, the relative phase of the two beams is
not involved in the process and the nonlinear process can be said to be an incoher-
ent one; such an assumption is generally well verified in semiconducting materials
at room temperature, in which the optical polarization of the electron-hole pairs is
quickly washed out by the interaction with the thermal bath of phonons. As we
shall discuss in the next chapter, coherent processes can however be observed in
semiconductor microcavities provided we dispose of sharp excitonic or photonic
resonances resonantly coupled by the nonlinearity to the fundamental cavity mode.

While the probe beam, assumed to be weak, can be treated at linear regime neglect-
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ing its self-interactions as well as its effect onto the pump beam, the pump beam
amplitude has to be taken into account at all orders by means of the generalized
transfer matrix algorithm previously used. As in the previous section, the refraction
index experienced by the probe beam is modeled by

I(pump) /Isat

sel (2.24)

neff _ nlz’n + Snmaz
S T o 12

pump — “pump

while the one experienced by the probe is given by

eff lin mazx (pump)/]s;zét
prabe = Mprobe Mot T3 Flpump) ] poat

n (2.25)

The coefficients ), and nl", , on75 and dnmet, 134, and I3, are in general differ-

ent, but of the same order of magnitude, provided both frequencies are sufficiently
far from all excitonic and interband transitions of the material medium.

In this framework, the transmission of the probe is a function of the intensity of the
pump beam: such a behaviour is equivalent to a sort of all optical transistor, in which
the pump beam plays the role of the base current and the probe plays the role of the
collector current. As in the conventional electronic transistors, the collector current,
i.e. the probe transmission, is controlled by the intensity of the base current, i.e. the
intensity of the pump beam.

In fig.2.6 we have reproduced the evolution of the transmission spectra for the probe
beam as the pump beam intensity is increased: the nonlinear frequency shift of the
optical mode is apparent; at a given frequency, the transmittivity of the probe can
be varied of more than one order of magnitude just by sweeping a resonance across
its operating frequency. Eventually, if the pump beam has itself a bistable behavior,
the bit of information stored in its hysteresis loop can be read by the probe beam.

In summary, such a device shows all the main features required from an optical
memory: write operations are performed by modulating the intensity of the pump
beam, read operations by monitoring the transmission of the probe beam. Unfor-
tunately, the upper bound on the probe beam intensity in order not to perturb the
pump beam is rather stringent in the present case of single DBR cavities: if both
the pump and the probe beams are intended to interact with the cavity mode, their
frequency difference can not be large and therefore both of them are able to cre-
ate an excitation in the material. This means that the probe beam has to be much
weaker than the pump beam and significant amplification of the pump signal onto
the probe beam can not be achieved.
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FIGURE 2.6: Simple DBR microcavity: transmission spectra of a (weak) probe
beam. Pump intensity grows from the solid line to the short-dashed line. A
contrast of more than one order of magnitude in the probe transmittivity is ap-
parent.

2.6 Nonlinear optics of coupled DBR microcavities

In the previous section we have discussed the simplest example of all-optical switch,
in which the intensity of a strong pump beam controls the transmission of a probe
beam, assumed weak enough not to perturb the refraction properties of the ma-
terial. Depending on the specific choices made for the operating frequencies and
the geometrical configuration, the actual extent of such a linear regime can be com-
pletely different; in particular, we have seen that the use of a single DBR microcavity
requires the probe beam to be much weaker than the pump one.

Since in a semiconducting material absorption is a fast decreasing function of the
distance from the electronic gap edge, this difficulty can be overcome by tuning the
pump beam close to such edge and the probe well inside the gap. In this way, probe
absorption results negligible as well as its nonlinear effect on the pump, while the
pump can create a substantial excitation even at moderate intensities. The probe
beam intensity can therefore be comparable or even larger than the pump beam in-
tensity so that the device truly behaves as an optical amplifier: a signal encoded in
a small modulation of the pump beam intensity is amplified into a stronger modu-
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lation of the probe beam.

In order for both beams to be resonantly coupled to the nonlinear device, the cou-
pled cavity configuration introduced in sec.1.7 is very useful, since its transmittivity
shows two resonance peaks: the pump beam can in fact be tuned close to the upper
one and the probe beam close to the lower one. This means that the pump intensity
inside the structure can be resonantly enhanced thanks to the resonance with the
upper cavity mode, while the probe transmittivity has a sharp dependence on the
pump intensity thanks to the resonance on the lower cavity mode.
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FIGURE 2.7: Nonlinear coupled DBR microcavities. Left panels: sketch of the
system under examination; the heights of the lines represent the refraction index
of the different layers. Right panels: reflectivity of a probe beam for different
values of the pump intensity which grows from very low (solid line) to very
high (long dashed line). Upper panels: nonlinearity in the external mirrors.
Lower panels: nonlinearity in the central mirror.

From an immediate extension of the general theory of sec.1.5.2, it is easy to see
how the nonlinear cross-frequency shift of one mode on the other is, at lowest order,
proportional to the matrix element

/ dex(z) |Ev(2)]” |Ba(x)]*, (2.26)

which quantifies the spatial overlap of the mode intensities; in the single beam case,
the self-frequency shift of eq.(2.11) is recovered. Coupled cavities (sec.1.7) look very
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promising systems from the point of view of giving a large cross-frequency shift,
since the eigenfunctions in the resonant case are the symmetric and antisymmetric
combinations of the single cavity wavefunctions. By appropriately choosing the
cavity parameters, the upper and lower cavity modes can be tuned respectively
close to the band edge and far inside the gap, as required for the optical amplifier
operation.”

As in the single cavity case, it is better not to concentrate the nonlinearity in the
cavity layers, but to distribute it along the whole DBR mirrors: fig.2.7 shows the
evolution of probe reflectivity spectra as pump intensity is increased; the main fea-
ture is a frequency shift of both resonance peaks. In the upper panel, nonlinearity is
situated in the external mirrors: in this case, both modes result shifted of a similar
amount by the nonlinearity. In the lower panel, the nonlinearity is concentrated in
the central mirror, whose transmission tends to be reinforced with growing light in-
tensities; the spacing of the doublet is therefore enhanced so that the nonlinear shift
is larger on the upper cavity resonance.
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Chapter 3

Nonlinear optics of microcavities II:
two-photon processes

All the discussion contained in the previous chapter has been focussed on the non-
linear effects which arise in semiconducting materials at room temperature; in this
case, the optical polarization of the electron-hole pairs is quickly washed out by the
interaction with the thermal bath of phonons and the nonlinear effect is due to the
incoherent excitation density created in the material by absorptive effects.

The present chapter is instead devoted to the discussion of a new class of nonlin-
ear optical effects which arise from two-photon processes in the presence of sharp
excitonic or photonic resonances nonlinearly coupled to the fundamental photonic
mode;”*”” more specifically, our attention will be focussed on a pair of different
systems, the mathematical description of which is however identical. The first of
them consists in a microcavity supporting two photonic modes at frequencies w;
and w, = 2w;; assuming an appreciable second harmonic generation (SHG) in the ma-
terial medium, the two photonic modes result nonlinearly coupled to each other by
a term which corresponds to the mutual conversion of two fundamental photons
into an harmonic photon and vice versa. The second system consists in a microcav-
ity supporting one photonic mode at a frequency w; approximately equal to half the
frequency w, of an excitonic transition; if this latter allows for two-photon absorption
(TPA), the excitonic mode and the photonic mode result coupled by a term which
converts two photons into an exciton and vice versa which is formally identical to

the second harmonic generation coupling term.



56

Semiconductor optics

After the general discussion of the model contained in sec.3.1, the following sec.3.2
is devoted to the analysis of transmission spectra through our system when it is
illuminated by a single beam at a frequency close to the lower mode frequency w;.
At linear regime the spectrum is characterized by a single peak at w;, while at high
intensities the main effect is either the appearance of a new peak at half the higher
mode frequency w,/2 or a two-photon Rabi splitting in the resonant case wy =~ wy/2.

Sec.3.3 is devoted to the linear optical response of our system when it is dressed by a
strong pump beam; such a case is much similar to the usual optical Stark effect, in
which an atomic transition is driven by a pump beam and probed by a weak probe
beam. Differently from that case, in which the nonlinearity was intrinsic in the two-
level structure of the material excitation, we are now dealing with a pair of linear
oscillators interacting with each other by means of a two-photon coupling term; for
this reason we shall refer to it as a two-photon optical Stark effect (TPOSE).

Because of this similarity, our results are physically most interesting in the two-
photon absorption case; hence we shall concentrate on the absorption spectra in the
case the system is driven at a frequency near the lower photonic mode and probed
near the upper excitonic mode. The main feature that we shall discuss is the strong
dependence of probe absorption spectra on pump intensity. When the intensity of
the pump is low enough, the spectra show a single excitonic peak at w,; at moderate
intensities, the dressing gives origin to an additional peak at w; +wy. For even higher
intensities, the response is more complicated and, in particular, gain is predicted at
some specific frequencies because of hyper-Raman scattering processes.

To make the discussion complete, an explicit expression for the coupling coefficient
between the modes has to be given in terms of the experimentally accessible non-
linear optical susceptibilities y? and x(®. This is done in sec.3.4, together with
a numerical estimate of the light intensity needed for the actual experimental ob-
servations of two-photon Rabi splitting or two-photon optical Stark effect in GaAs
based microstructures.
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3.1 The model

Consider a system with two bosonic degrees of freedom nonlinearly coupled by
cubic interaction terms and driven by classical external fields:

H = hwy blby + hwy bbby + BB LD + K b12by + hky By (1)) + bk B ()b +
+  hkyEy(t)bh + Bk EL ()bs. (3.1)

Such an Hamiltonian,”® %2

supplemented by the usual damping terms, can describe
a few different nonlinear optical effects: our attention will be concentrated upon the
two cases of resonant two-photon absorption (TPA) and of doubly resonant second
harmonic generation (SHG) inside a microcavity. In the TPA case one boson is a
cavity photon and the other is an exciton, while in the SHG both bosons are cavity
photons. The nonlinear coupling is supposed to be nearly resonating, i.e. 2w; is
supposed to be close to wy; apart from the inclusion of phenomenological damping

terms, all other modes of the system will be neglected.

The origin of the nonlinear coupling term #3by0? is different in the two cases: in
the TPA case, in fact, it describes coherent optical transitions in the material which
bring to the absorption of two cavity photons and the consequent creation of an
exciton. The 3 coefficient is thus proportional to the effective matrix element for a
two-photon absorption process, which, according to the general formula of second-
order perturbation theory

1= 3 U o

contains a sum over all intermediate virtual states in which a matter excitation is
created after absorption of a first photon. In sec.3.4, we shall relate 3 to the third-
order nonlinear optical susceptibility x® (—w; —w,w,w) which in the specific case of
resonant excitonic TPA can be written in the form:

f(3)
h(wa — 2w — iyy)’

X (w0, —w,w) = (3.3)

This will allow us to extract 3 from experimental data or theoretical calculations for

the TPA cross-section which are present in the literature.

On the other hand, a nonlinear coupling term of the same form describes in the SHG
case an optical process in which two photons of the fundamental cavity mode are
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converted into a single harmonic cavity mode at approximately twice the funda-
mental frequency. This means that a complete adiabatical elimination of the matter
degrees of freedom has been performed and all the matter dynamics has been sum-
marized in the effective matrix element of the process; according to perturbation
theory, this is now a third order one: absorption of the first fundamental photon,
absorption of the second one and final emission of the harmonic photon; at each
step, a sum over all virtual matter states analogous to the one in eq.(3.2) is required.
In sec.3.4 we shall relate 3 to the familiar second-order nonlinear susceptibility of
the material y?(—2w;w,w).

The hk;E;(t)b] + hk}E#(t)b; terms describe the driving of the b; and b, modes by
external classical fields E(¢) and Es(t), e.g. laser beams incident on the cavity: a
photonic mode can be driven by the external light field which leaks into the cavity
through the non-perfectly reflecting front mirror, while an excitonic mode can be
driven by an external radiation provided the cavity mirrors are nearly transparent
at its frequency in order for the photonic mode structure of the cavity not to affect
the (linear) coupling of the external radiation to the exciton. In the following we
shall simplify the notation by letting F;(t) = k; E;(t).

Because of the coupling to several continua of external modes, the eigenmodes of
our system have a finite lifetime and their energy is dissipated out in several differ-
ent ways. Since these effects are dissipative, they are not included in the Hamilto-
nian above, but have to be introduced at the level of the quantum master equation
as done in sec.1.5.1 giving —%ISZ- terms in the equations of motions egs.(3.4-3.5) for
the field amplitudes. The damping of the photonic modes has to include the radia-
tive escape of photons from the cavity as well as free pair absorption, while phonon
and disorder scattering or ionization contribute to the damping of excitonic modes.
Other possible forms of damping terms, which can arise, e.g., from two-photon free
pair absorption, will not be considered in the following of this chapter, although
they could result necessary for a refined fit of experimental data.

In the high intensity limit <?)§IA)1> , <?);l;2> > 1 the same mean field approximation
can be performed as in sec.2.2, in which all operators are replaced by their mean

values and their products are assumed to factorize; within such an approximation,
the equations of motion for the field amplitudes b; = <I§Z> can be written as:

by = —iwiby — by — 2iB"bebi — iFy (1) (3.4)
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Such a description clearly does not take into account all those effects which arise
from the quantum nature of the fields and their quantum and thermal fluctua-
tions;®>8* as discussed in chap.6, we expect such an approximation to be valid for
small values of the nonlinear coupling (.

Leaving aside sub-harmonic generation effects®"

which take place when the sys-
tem is driven on the harmonic mode, we shall concentrate our attention on the case
in which the driving is only on the fundamental mode and it is monochromatic at
frequency wy: Fi(t) = F,e ™" and F, = 0. It is convenient to introduce the slowly
varying variables a; = bt and ay = bye?™L; putting dy; = (w2 — 2w;)/2 and

01, = wy, — wy, the evolution of the system will be given by:

dl = iéLal — Y141 — 27:6*CL26L>{ - iFo (36)
ag = 22((5[, — (SM)GQ — Y2Q9 — Zﬁ&% (37)

A great deal of information about the physical behavior of our system can be ob-
tained by looking for stationary solutions of the system of differential equations
eq.(3.6) and eq.(3.7); the system being dissipative, it can, in fact, be expected to gen-
erally converge to a stationary solution at least for weak drivings. In any case, the
stability of the solution found can be verified by means of the usual linearization
techniques.

The stationary solutions (A; and A,) are given by the equations:

BA* _
5[, — (SM +Z’}/2/2
_ BAL/2
N Or, — O +i’72/2

Ay |0p +iy — Fy (3.8)

Ay (3.9)

and the stability can be determined from the eigenvalues of the linearized system”

%507 =M - ia; (3.10)

where we have introduced the displacement from the steady state solution:

- * * * s\ T
oa = (al—Abal—Al,ag—Ag,a2—A2) =

= (day,da’,day, 6al)" (3.11)
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and the linearized evolution matrix

-7 + 10, —2i0%A, —22’6*14*{ 0
2i BA* I .
M — z@ 5 v1 — 0 .O 2i0A, (3.12)
—QZﬁAl 0 —Y2 + 22((5[, — (SM) 0
0 2i3* A 0 —y — 2i(8;, — Bur)

3.2 Transmission and second harmonic generation spec-

tra: two-photon Rabi splitting

Such a simple theory can predict exactly the transmission properties of the struc-
ture under continuous wave (cw) illumination: to visualize their behavior, in fig.3.1
we have reproduced a few spectra of the internal intensity parameter Q* = |34,
(which is proportional to the internal intensity as well as to the transmitted one) as
function of the driving frequency J;, for different values of incident (driving) inten-
sity: the upper panel refers to the exact resonance d,; = 0 case, the lower panel to
the detuned case ), = 4v. The whitened regions correspond to unstable behavior.
We have supposed 71 = 72 = 7.

In the latter case (d)s = 4+), the transmitted intensity at low incident intensity, i.e. in
the linear regime limit, is characterized by a single peak at 6, = 0 (i.e. at w;, = wy);
at higher intensities, a new peak appears close to 6, = dy (i.e. at w, ~ wy/2) and
for growing intensities the peaks bend in the external direction repelling each other
and tend to have the same strength. In the J),; = 0 case, the transmitted intensity
shows initially a single peak at §;, = 0, which at higher intensities splits in two; for
growing intensities the two components bend again towards the external direction,
their strengths staying equal.

Thanks to the bending of the transmission peaks with growing intensity, dispersive
optical bistability can be obtained:* a multiple intersection of the vertical straight
line corresponding to a given ¢, with the transmission spectrum at a given incident
intensity has the the physical meaning of optical multistability already encountered
in sec.2.1. The instability region present under the bended peak correspond to the
central unstable branch of the hysteresis loop. The instability predicted in the region
between the two peaks correspond instead to a so-called hard-mode transition: the
eigenvalues of the stability matrix M having a non-vanishing imaginary part at the
threshold, the system goes from a stable solution to a limit cycle, which physically
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oLy

FIGURE 3.1: Internal intensity parameter (22 = |34, |?, proportional to the in-
ternal as well as to the transmitted intensity) for different values of (constant)
incident intensity as a function of the detuning of the incident field d;. Left
panel: exact resonance case d;; = 0. Right panel: §,; = 4v. The grey scale cor-
responds to the incident intensity: lighter shadowing means higher intensity;
white regions correspond to unstable behavior.

corresponds to self-pulsing of the transmission with time; a detailed discussion of
such phenomena is beyond the scope of the present discussion and can be found

in. 78,80, 82

Since resonant enhancement of SHG by means of an optical cavity is actually con-

27,86-88 it can

sidered as a most useful way for improving the performances of devices,
be interesting to investigate the intensity of the generated harmonic field as a func-
tion of the incident frequency and detuning; in our formalism, this is proportional
to

BAz2 |
O — O +i7y2/2

I = A" = (3.13)

i.e. to the square of the fundamental mode internal intensity times a temporal phase
matching factor (01, — dpr + ivy2/ 2)_1, whose physical meaning will be clarified in the
following.

In fig.3.2 we have represented the spectra of harmonic intensity as function of the in-
cident frequency 0;, for different values of incident intensity; again the upper panel
corresponds to the exact resonance d,; = 0 case, while the lower panel to the de-
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tuned 0,; = 47 case. As done previously, instability regions have been whitened.
The principal features are analogous to the previously analyzed transmission case:
optical bistability and self pulsing can thus be observed also by looking at the har-
monic field intensity. Notice the typical quadratic dependence of the harmonic in-
tensity on the internal fundamental intensity: all the bistability and self-pulsing ef-
fects are in fact due simply to the coupling of the incident beam with the cavity
mode at the fundamental frequency.

-6 -4 -2

2 4 6 -4 -2 0 4 6 8

0 2
oLy oLly

FIGURE 3.2: Second harmonic intensity spectra for different values of (con-
stant) incident intensity. Left panel: exact resonance case d); = 0. Right panel:
d0m = 4v. The grey scale corresponds to the incident intensity: lighter shad-
owing means higher intensity; white regions correspond to unstable behavior.

The undepleted pump approximation, currently done in nonlinear optics when the
generated harmonic field is supposed to be weak compared to the fundamental one
corresponds in our formalism to neglecting back-action of the harmonic field on the
fundamental one, i.e. to assuming b, = 0 in eq.(3.4) or, equivalently, A, in the square
braket of eq.(3.8). In this scheme, the fundamental beam is not affected by nonlinear
effects, while the harmonic one is still described by eq.(3.5) and eq.(3.9). For current
experimental parameters, such an approximation is generally a good one; first ev-
idence of pump depletion phenomena in resonant SHG is however present in the
spectra of [89, fig.3].
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3.2.1 Physical interpretation of the results

The relatively simple structure of eq.(3.8) allows for a clear physical interpretation
of the spectra of fig.3.1; since the transmittivity of the system 7 is proportional to the
ratio of the internal amplitude A, and the incident amplitude F,, we can focus our
attention on its rescaled version:

A 02 !

F=0 = |6, +im — :
FO L n 5L—(5M—|—Z’}/2/2

(3.14)

which has a form much similar to the one described by eq.(1.20), but for the de-
pendence of the transmittivity 7 on the transmitted intensity 2> which is a typical
signature of nonlinear effects: for the moment we shall consider 2 as an indepen-
dent parameter and we shall study the behavior of the transmission spectrum at
fixed €.

Assuming for the sake of simplicity the damping coefficients -, » to be negligible, the
transmittivity (as function of the incident frequency 6;) shows two closely spaced

poles at:
o | (5 o0\
’ 2 4
with oscillator strengths given by:
01— O
= 1
h=3—% (3.16)
0y —0n
fo= 5 (3.17)

the total strength f, + f; being constant and equal to 1.

These results are easily interpreted in the two-level system framework as a non-
linear Rabi splitting of two quasi-resonant states, detuned of 26,; and coupled to
each other through the intensity dependent () term.?> We refer to it as two-photon
Rabi splitting because it is due to the cubic interaction term h3bib? + h.c.. At lin-
ear regime, i.e. when the coupling is vanishing, one eigenstate corresponds to a
pair of photons in the fundamental mode and the other to a single boson on the
harmonic mode; clearly only the former is bright in a transmission experiment at
low intensity. At higher intensities, when the nonlinear interaction begins to be im-
portant, the modes are mixed up and the bright component is redistributed among
them. Thanks to such a redistribution, the spectrum start to show a pair of peaks:
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the stronger one is initially at wy, while the weaker one appears at w,/2 (the factor
1/2 accounts for the fact that fwo fundamental bosons must be destroyed to cre-
ate an harmonic one). For growing coupling (2 their mutual interaction make them
repel in energy and equalize in strength; at very high intensities, the detuning d,,
becomes small as compared with the coupling €2 and thus we have a doublet of
equally strong peaks with a splitting equal to 2(2 (we can neglect d,; in eq.(3.15)).
When 6,; = 0 the poles are equally bright at any intensity, since the resonance con-
dition guarantees an equal distribution of the bright component. Moreover the two
peaks are symmetrically placed with respect to wy = w,/2 with a splitting equal to
20).

From the structure of eq.(3.14), in analogy with the discussion following eq.(1.20),
we could expect for v, < v; the appearance of the peculiar spectral features given
by quantum coherence effects. Unfortunately, as we can see in fig.3.1, this is not
the case because they generally lye inside the instability regions and thus are not
experimentally accessible in a cw experiment.

So far, we have discussed the behavior of the transmittivity spectra as they depend
on the intensity parameter (2: in physical terms this means that we have studied the
behavior of the transmittivity at a fixed value of the transmitted intensity. From an
experimental point of view, however, we would rather be interested in spectra at
constant incident intensity whose calculation requires an inversion of the functional
relation between the incident intensity and the transmitted intensity. The curves of
fig.3.1 and 3.2 have been plotted after performing such an inversion, the sawtooth
appearance of the instability being due to finite numerical resolution.

3.2.2 Comparison with another quadratically nonlinear system.

The equations 3.6 and 3.7, which describe the time-evolution of our system, are
very similar to the ones describing spatial propagation of a monochromatic wave
through a second harmonic generating medium when the undepleted pump ap-
proximation is not made. If we denote £, and Ej, the slowly varying field am-
plitudes respectively of the fundamental and the harmonic field, n, and ng, the
refraction indices and Ak the wave vector mismatch 2k, — k-, and we switch to the
new variable E2w = %ng e Ak the propagation equations in the so-called slowly
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varying envelope approximation (SVEA) have the form:*

0 iw\2

5 = o [X@) (—Qw;w,w)E:ng] — wE, (3.18)
. w2 1 . .

QEQW - iwy/2 —X(2) (—2w;w,w) Ef) — 1 Ak By, — o Ea, (3.19)

0z 2n9,¢ | 2

which have the same formal structure as equations 3.6 and 3.7, apart from the forc-
ing term F,; in particular the wave vector mismatch Ak plays the role of the mode
detuning 24,,; for this reason the factor (5, — 657 + i72/2)” ' above can be considered
as a temporal phase matching factor: at a given fundamental (internal) intensity, the
amplitude of the generated harmonic field is proportional to the inverse of the mis-
match, i.e. the coherence time. Of course, despite the mathematical similarity of the
equations, the physical informations which have to be extracted is different: in the
present case, we are looking for the steady state in the presence of driving terms,
while in the case of equations 3.18 and 3.19 the driving term is absent and boundary
conditions at the interfaces of the nonlinear slab have to be imposed.

3.3 Two-photon optical Stark effect: probing the dressed

system

In the previous section we have described the steady-state response to a monochro-
matic strong driving and we have focussed on stable equilibria, at the expense of
other features, like self-pulsing. The stability of such solutions has been verified
checking that all the eigenvalues of the linearized evolution matrix M have nega-
tive real part. But the linearized theory can also give a lot of other information on
the dynamical behavior of the system when it is illuminated by a strong beam: be-
sides quantum fluctuation effects in the spectra of transmitted and sub/second har-
monic light, which have been already studied in detail by Drummond et al.,® the
linearized evolution can be used to determine the (linear) response of this dressed
system to weak additional probe fields; the response of our system to the probe will
in fact be different according to the intensity of the pump beam. Such an analysis is
clearly restricted to pump intensities and frequencies which lie inside the stability
region. The result we shall obtain are strictly related to Drummond’s ones, since the
general linear response theory connects the response of a system to its fluctuations
(fluctuation-dissipation theorem™).
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Calling again d«& the displacements of the slowly varying field amplitudes from the
steady state (in the absence of the probe) and M the linearized evolution matrix
in the rotating frame (see eq.(3.11) and eq.(3.12)), the equations of motion can be
written as

%507 = M- da+ f(t); (3.20)
where the f| () term accounts for the probe field (again in the rotating frame) and
corresponds to additional driving terms in eq.(3.6) and eq.(3.7).

The solution of eq.(3.20) is immediately obtained in the most simple case of a mono-
chromatic driving term f(t) = f,e~™!. Putting dd@(t) = dd,e ™, it is easy to verify
that

0y = — M+ iwl] ™ - fo; (3.21)

in this way the eigenvalues of M get the physical meaning of frequencies of the
dressed modes of the system as driven by the pump beam: since M depends on
the pump intensity F;, via the fields A; and A, that the pump generates inside the
structure, the energies of the dressed modes and their weights (i.e. their oscillator
strengths) will depend on the pump intensity as well. So the spectral features of
the response to the probe beam will suffer remarkable qualitative changes when the
pump intensity is varied. Without the cubic interaction term 73 E;iﬁ + h.c. in the
Hamiltonian, this effect would not be present and the response would be indepen-
dent of the presence of the pump beam F,.

Effects of this kind, which involve nonlinear interactions between a strong dressing
(pump) beam and a weak probe have been the subject of active study for a couple
of decades, but the interest has been for the greatest part focussed on the intrinsic
nonlinearities of two or three level atoms. The Mollow triplet of fluorescence®!*?
and the stimulated emission and absorption lineshapes of nearly resonantly driven
two level atoms (optical Stark effect, OSE)*>*° are among the most celebrated ex-
amples. Very recently, there has been much interest on excitonic Mollow spectra in

1°° and theoretical®” work has been

semiconductor microcavities: both experimenta
devoted to the observation of changes in the probe absorption spectrum when the

exciton is resonantly dressed.

Such an effect stems from the fermionic nature of the electron-hole pair forming the

exciton, in the sense that at high excitation densities the exciton can not be consid-

5,65

ered a true boson anymore.”* In the present work we are considering a somewhat

different case: instead of dealing with an intrinsically nonlinear material excitation,
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the nonlinearity is now concentrated in the mutual interaction between two rigor-
ously bosonic modes. The predicted effect in the TPA case, in particular, does not
require any deviation of the exciton from bosonic behavior,” but only the possibil-
ity of two photon processes; for this reason it will be called two photon optical Stark
effect (TPOSE).

A most interesting quantity which can be calculated by means of this linear response
theory is the excitonic polarization created in a TPA configuration by a weak probe
(test) field at a frequency w; close to wy: depending on the intensity F, and the fre-
quency wy, of the pump, its spectral features can be radically different. For simplicity
we shall suppose that the cavity mirrors do not confine light at w,, so that the cou-
pling of the exciton to the incident probe beam is not affected by the photonic mode
structure of the cavity. An experimental observation of such effects clearly requires
some violation of parity selection rules, so as to make the excitonic transition al-
lowed for both one-photon and two-photon absorption: a single quantum well un-
der a strong static electric field perpendicular to the QW layers® or an asymmetric
quantum well *7% structures could be good choices.

In the slow variables, the additional driving term corresponding to the probe has
the form:

f(t) = iF; e iwem2wL)t _ 1 Fy glwe—2wL)t. (3.22)

o = O O
_ o O O

we have set F;, = k;E, where £, is the amplitude of the probe beam and £, is a
coupling coefficient proportional to the dipole matrix element of the one-photon
transition. In the following we shall also use the reduced probe frequency defined
as 0; = w; — 2wy. The polarization of the system is determined by the third ele-
ment of the response da,. Since the additional driving term contains two different
frequencies +6,, the response of the system will also have two spectral components

Sa(t) = daPe Pt 4 §a-)tiort (3.23)
which result in an actual excitonic polarization oscillating at both w, and 4w, — w;

Pexc(t) — {§a§+)e—i5tt + 5ag_)€i5tt} e—2’ith + h.C.

= {5@&“6_“’“ + 5&5_)6_“4‘”“%”} + h.c.. (3.24)
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The first term derives from the linear polarization of the (dressed) system and has
the same frequency w; as the forcing field; the second term instead describes a po-
larization at a frequency which is symmetrical of w, with respect to the oscillation
frequency 2wy, of the dressing field A,. This last term, which is present in atomic
systems as well, arises from nonlinear wave-mixing effects of the (weak) probe with
the (strong) pump beam.

The expression eq.(3.24) for the polarization can be rearranged as
P.oo(t) = e ™! {5a§+> + 5@5_)62i‘5tt} +h.c; (3.25)

physically this means that the resulting polarization can be seen as an oscillating
polarization at w; amplitude-modulated at §;. Since the modulation frequency d, is
generally rather high, the most relevant quantity is the mean absorption suffered by
the probe beam, and then only the first term in brackets 5aé+) must be retained. The
susceptibility is then given by X, 5a;+) /E; and probe absorption is proportional
to its imaginary part.

Its most peculiar physical features can be predicted in a rather simple way by look-
ing at the explicit form of the equation of motion for the actual (not the slowly vary-
ing) displacements of the fields from equilibrium 4b;, 6b7, dbe, and 0b3 (cfr.eq.(3.4)
and eq.(3.5))

6by = —iw18by — 718by — 2i[F* At rtby — 203" Age 2Lt s (3.26)
6by = —iwsdby — Y20by — 2iBA1e W5y + iFre (3.27)
ot = iw 0bt — 40Dt + 2if AT ED] + 2B AL wE5h, (3.28)
05 = iwydbh — 70bl + 2iBATEISbY — iF et (3.29)

two different sorts of time-dependent coupling terms are present: the first one,
whose intensity is proportional to 2 = |3A;|, connects the db; and &b, fields to each
other; the other one, whose intensity is instead proportional to |3A4,| and thus to 02?,
connects the db, field to its complex conjugate 6b7.

For moderate pump intensities only the former one will be important and thus the
pair of fields da, » will be decoupled from the complex conjugate fields daj ,. From
the numerical calculations, it results that the fields and their conjugates are effec-
tively decoupled only for pump intensities below the instability regions. If we ne-
glect the latter coupling (i.e. the one o |3A;]), the system can be described as a pair
of linearly coupled oscillators at w; and w, with a time-dependent coupling term
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—2i3A e~ wrt; by setting 5(31 = e wrish,, the time-dependence of the coupling term
can be eliminated: in this way the equations of motion eq.(3.26) and eq.(3.27) can be

simply rewritten as

§b = —i(wy +w)oby — 18by — 203 A%by (3.30)
Oby = —iwybby — Yp0by — 2iFA10by + iFe” . (3.31)

The eigenmodes of this system depend on the bare frequencies w; + w;, and wy and
the coupling —2i3A; in the usual way for a two-level system: a pair of modes at
frequencies w, and wg which start respectively at w; + w;, and w, and tend to mix
and repel as the intensity of the coupling grows up. Since the driving is only on the
second mode, at low coupling intensity the brightness is concentrated in this mode,
while for growing intensity it tends to redistribute equally among both eigenmodes.
The probe absorption spectra will show peaks at the oscillation frequencies of the
modes and the intensity of each peak will be proportional to its brightness.

Fig.3.3 and fig.3.4 contain two series of spectra which differ from each other for
the choice of detuning parameters ¢, and d,,: in each series the absorption spec-
tra are plotted as a function of probe frequency at growing dressing intensities A,
(and hence couplings); the frequency zero has been set at the excitonic frequency ws.
Consider the first spectrum, reproduced in the upper-left panel of fig.3.3 (6,1 /7 = —2
and 6., /v = 8): at very low dressing intensity (a), we recover the linear spectrum,
with a single peak at the frequency of the bare excitonic mode wy; at slightly higher
intensity (b) a new peak appears at a frequency w; = wy + wy, (i.e., (W — wa)/y =
(0 — 26n)/y = 12); as intensity grows up (c,d), the strengths of these two peaks
tend to equalize and their energies to repel each other. This is a clear signature of
mixing and repelling of two (one dark and one bright) coupled modes in a two-level
system.

The physical meaning of the peak at w; 4 wy, instead of 2w; can be understood if we
think at the nature of the oscillating coupling; this is in fact due to the dressing field
Aje~™tt and in quantum terms it converts an exciton in the harmonic (w2) mode
into a photon in the fundamental (w;) mode plus one more photon in the dressing
field. Differently from the previously analyzed single beam nonlinear optics, the
coupling is now linear in the fields 60, 5, so that the spectral features do not depend
on the intensity of the probe beam, provided this is weak enough not to perturb
appreciably the system. This is again due to the fact we are not dealing anymore
with the conversion of one harmonic boson in two fundamental ones, as we were
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FIGURE 3.3: In the two upper frames, probe absorption spectra at different
dressing intensities. Absorption has been normalized to the bare exciton ab-
sorption. Dressing intensity grows from (a) to (h); instabilities are between (e)
and (f) and above (h). Notice the change of frequency scale. Non-resonant case
w1 +wp —wo = 127, 2wy, — wy = 207: Sy /vy = =2, 6./y = 8. In the lower
frame, schematic plot of the energy levels involved in the optical processes: the
frequencies w, and wg of the dressed states shift with increasing pump intensity.
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FIGURE 3.4: In the two upper frames, probe absorption spectra at different
dressing intensities. Absorption has been normalized to the bare exciton absorp-
tion. Dressing intensity grows from (a) to (h); instabilities are between (e) and (f)
and above (h). Notice the change of frequency scale. Resonant case wi+wr, = wa,
2wy, —wy = 67: dp /vy = 3,61 /y = 6. In the lower frame, schematic plot of the
energy levels involved in the optical processes: the frequencies w,, and wg of the
dressed states shift with increasing pump intensity.
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doing in the one-beam case, but with a conversion of a harmonic exciton into a
single fundamental photon plus a dressing A; photon (wy,).

Analogous considerations can be repeated in order to explain the structure of the
spectrum reproduced in the upper-left panel of fig.3.4 (§,/y = 6 and 6y /7 = 3),
though the resonance condition wy; = w; + w;, makes the spectra look somewhat
different: the bare modes at wy and w; + wy, are in fact resonant and hence the cou-
pling does not introduce a new peak, but only split the existing one in a symmetric
doublet of peaks. This is still centered at J, = 0 and its spacing grows with growing
dressing field intensity.

As it can be observed in the upper-right panels of fig.3.3 and fig.3.4, at higher pump
intensities the —2i3* Aye=?*.! coupling terms start to be relevant as well. In particu-
lar, its effect begins to be dramatic when one of the absorption peaks (the upper one
at w,, in our specific cases) is close to 2wy, (i.e. wy —wy = 20;, — 2d)), frequency at
which it resonates. This is verified when the dressing intensity is close to the lower
edge of the bistability unstable region. In this case, the peak narrows (the thresh-
old corresponds to the vanishing of the real part of one eigenvalue of M), its shape
is modified and some gain (i.e. negative absorption) appears (see spectra (e)) at a
frequency just above the resonance frequency 2wy..

Increasing the dressing intensity above the bistability unstable region, i.e. in the up-
per branch of the hysteresis curve, the spectra result radically different. The two ab-
sorptive peaks are still present at frequencies w, and wg and keep on repelling them-
selves as the pump intensity grows up. At the same time, a gain peak is present at a
frequency 4wy, — w,, which is the symmetric of the upper absorption peak frequency
w, with respect to the resonance frequency 2w,. For growing pump intensity, as the
absorption peak frequency w, shifts towards higher frequencies because of the cou-
pling term —2i3A;e~"“!, the gain peak shifts towards lower frequencies in order to
satisfy the symmetry condition with respect to 2w;,. Near the threshold of the self-
pulsing instability, the other absorptive peak at ws begins to have a gain counterpart
at 4wy, — wp as well: in fig.3.3 this gain peak is hardly visible near (w; — ws)/v >~ 60,
while in fig.3.4 it is located near (w; — ws) /v =~ 20.

Such qualitatively new features, are stable with respect to variations of detunings
and linewidths as we have verified; in analogy to the gain appearing in the classical
OSE,"?*% a simple physical interpretation can be put forward in terms of stimu-
lated hyper-Raman scattering'®” in a dressed system picture; the main effect of the
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—2i3* Aye™**Lt coupling term is in fact to induce conversion of a few quanta of the
dressing fields A; and A, (for a total frequency 4w;) into a dressed excitation (at w,
or wg) plus one more photon in the probe beam (at w;), which thus results amplified.
Indeed, for such a process, energy conservation imposes that w, = 4w;, — w, g in
this way it is possible to explain the symmetry condition empirically found in the
calculated spectra.

In order to understand why the hyper-Raman process takes place involving the 4wy,
frequency, it is useful to reformulate the dynamics of the dressed system in the usual
Hamiltonian formalism of quantum optics; in terms of the field displacements b,
and ¢b,, the effective Hamiltonian of the (dressed) system can be written as

Hy = hw 0bi6by 4 hws 6bLoby + 253 Aye ™t 6bi5by + 25" Ate™ ! 6bl 5by +
+ BB Age 2rt5hI? 4 BB A rt 5 + Rk Eye it 6bl 4 hk; By e’ 5b,.
(3.32)

If we neglect for the moment the last two terms, we are left with two bosonic modes,
linearly coupled to each other; this approximation is valid at low pump intensity,
i.e. when the A; coupling is much greater than the A, coupling. As previously
described, the probe absorption spectra are in this case characterized by a pair of
absorptive peaks corresponding to the dressed modes at w, and wg, which result
from diagonalization of the Hamiltonian.

The appearance of gain at higher pump intensities is due to the terms proportional
to 002 and 6b!%, which allow for the conversion of one harmonic dressing exciton
Ay at 2wy, into a pair of quanta of the fundamental mode 607 and 60} of frequencies
respectively equal to v} and w/. One of these quanta then merges with a A; dressing
photon at w;, into an excitation at w, or wg which is left inside the system; the other
one, together with a A, dressing photon, is instead converted into an additional
photon in the probe beam at w;. In conclusion, two A; dressing photons and one
A, dressing exciton (for a total frequency equal to 4w;,) are converted into a dressed
excitation at w, or wg, plus a probe beam photon at w;: this kind of optical process,
in which some quanta of a strong pump beam are scattered into an excitation of the
material system plus an escaping photon, is called hyper-Raman scattering;® further-
more, since the emission of the escaping photon is stimulated by the probe beam,
we shall say it is a stimulated hyper-Raman scattering.

As a final remark, it is interesting to notice that the sum rules demonstrated at all

103,104

orders of perturbation theory in are well verified even by our model, which
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allows for non-perturbative nonlinear optical effects, like optical bistability and op-
tical self-pulsing; in particular the absorption sum rule, which states that the inte-
gral of the probe absorption coefficient over all frequency is independent of pump
intensity, has been numerically verified in the stability regions. According to this
sum rule the appearance of gain in some spectral region must compensates for an
increased absorption in other spectral regions.

3.4 Discussion of material and geometrical parameters

Until now we have not paid attention to the absolute value of the nonlinear cou-
pling j3; all the effects described in the previous sections depend only on the product
2 = |BA;]. Indeed it seems theoretically possible to compensate for a small 3 by the
use of high intensities; however very high light intensities are not handy because
of high heat production inside the structure and the possibility of other compet-
ing nonlinear effects. A high 3 would thus allow for the observation of our specific
two-photon processes at intensities at which other processes, like non-resonant Kerr
nonlinearities, exciton bleaching or higher harmonic generation are negligible; fur-
thermore, if 3 is large enough for nonlinear effects to be important with just a few
excitation quanta in the modes, quantum fluctuations give important corrections to
the present mean-field results and peculiar quantum coherence effects can be ob-

served.

An explicit calculation of the parameter 3 can be performed starting from the usual
optical constants of the materials forming the structure; as we have already pointed
out, in the SHG configuration 3 is related to the y® susceptibility of the materi-
als, while in the TPA case it depends on the generalized oscillator strength of the
two-photon absorptive transition, or, in other words, on the resonant part of the
x® susceptibility. In the following, we limit our attention to planar structures, in
which all the equations reduce to one-dimensional ones; the general case does not
introduce in principle new different features, apart from the geometrical complica-
tions due to the vectorial character of the fields and the tensorial character of the
susceptibilities.

If we expand the electromagnetic field in eigenvectors of the wave equation in a
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linear refractive background medium of dielectric constant ¢(z)

Bz, =Y {Ei(x)e_i“itai(t) + 5;(x)ewaj.(t)} (3.33)
and we perform the so-called SVEA approximation (sec.1.5.2), which correspond to
supposing the temporal variation of the mode amplitudes to be much slower than
the oscillation frequency, we get to the explicit expression for the coupling constant
3 in the SHG case:®

_ _l *. (2) 2 d 4
Bsne = 5 Exx)" X (@)1 ()" du. (3.34)
The physical interpretation of such an expression is evident: it is the overlap inte-
gral of the square of the fundamental wavefunction with the harmonic wavefunc-
tion weighted by the x® nonlinear susceptibility of the material; in a quantum field
theoretical language, this expression corresponds to the matrix element of a three-
photon vertex in which two fundamental photons annihilate into a harmonic pho-
ton. Since we are dealing with planar structures, the wavefunction normalization
has been chosen to be the natural one-dimensional one, i.e.
™
in this way the mode intensities |b;|> have the meaning of mean photon density per
unit surface. From this choice it follows that the photonic wavefunction has the
dimensions of an electric field times a length while 3 is the product of a frequency
times a length. From eq.(3.34) it is evident how the arbitrariness in the definition
of the global phase of the wavefunctions reflects on the nonlinear coupling /5 (and
analogously on the external couplings k£ »): a change in the phase definition of the
wavefunctions must in fact correspond to a change in the system parameters in a

way to leave the Hamiltonian invariant.

In the presence of an isolated two-photon absorption transition, the ) susceptibil-
ity can be written as®

f(3)
h(wy — 2w — i)’

(3.36)

X (~w;0, —,w) =

because of its similarity with the well known oscillator strength of a linear transi-
tion, the quantity f©® can be called generalized oscillator strength of a (two-photon)

transition. The nonlinear excitonic polarization can be written as

Pyp(z,t) = 3¢\ () |E ()] E(2) s [* ar. (3.37)
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Inserting this result in Maxwell’s equations and performing the SVEA approxima-
tion as previously, we get to a motion equation for the field amplitude of the form

day
ot

3 \al |2 aq
h2 (wexc - 2<")L — if)/exc)

= —via, — iF et wr=w) 4

/ Eu@)* O (2) dz. (3.38)

Comparing these term with the analogous equation that can be derived from our
Hamiltonian formalism:

0 . 2132
Bl — i — iFpe ) LIS (3.39)
Wy — 2w, — 172
we get to the final result:
3
Breal’ = 5 [l 1O@) do (3.40)

the phase of 3, which is still undetermined, is not physically important, since it
determines only the relative phase of the fundamental and harmonic fields (see
e.g. eq.(3.9)); when we are driving the system on both modes, the phase of [ fixes
the phase of the amplitude oscillations in the excitonic polarization eq.(3.25). The
physical meaning of the remaining indetermination in the absolute phase of Grp4
depends on the fact that we have used as input only the oscillator strength of the
two-photon transition, which correspond to the square modulus of the effective ma-
trix element; since the absolute phase of an excitonic field is generally not observed,
such an indeterminacy does not have physical consequences (sec.1.5.2). The propor-
tionality of the coupling 3 to the square root of the generalized oscillator strength
is analogous to the classical vacuum Rabi splitting, in which the Rabi frequency is
proportional to the square root of the density of resonant atoms or quantum wells.*

After having determined the general expressions for the coupling constant 3 in both
SHG and TPA cases, it can be interesting to compute quantitatively the magnitude
of the predicted effect in a couple of specific experimental arrangements. We shall
concentrate our attention on the nonlinear Rabi frequency €2 = |3B;] as function of
the internal intensity on the fundamental mode. For a simple metallic planar cavity
of length L and dielectric constant ¢, the wavefunction of a photonic mode is given

4 .
g =1/ thw I sin ko (3.41)
€

s (3.42)

by the expression

with
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and the internal light intensity in each propagation direction can be written as:

C\/E ) hLU1C 2
Ling = —— &1 = A7, 3.43
0= ahlm =4 e | A (3.43)
where £; has been taken at an antinode of the cavity mode. It is important to re-
member that, since we are working close to resonance, the internal intensity can
be several orders of magnitude higher than the incident one, the proportionality

constant between the two being as large as the @ factor of the cavity.!®

According to the considerations worked out by Berger,”” second harmonic gener-
ation in a metallic mirror microcavity is most effective when the cavity length L
equals the second harmonic generation coherence length L., of the nonlinear ma-
terial; for GaAs at the technologically useful wavelength of 10.6,m the coherence
length amounts to 108m. In this specific geometrical arrangement, explicit integra-
tion of eq.(3.34) brings to the result:

() 27rhw1

7[/63 w1.

Bsaa = 4x (3.44)

Using eq.(3.43) and eq.(3.41), the nonlinear Rabi frequency 2 = |§A;| can be written
in terms of the internal light intensity I,,,; as:

Q 27T[ t

— =4 @ 3.45

w1 €/2¢ (34)
The experimental value of Y for GaAs at 10.6um is about 2.4 - 10 "esu.81% So,

in order to observe the splitting in the case the cavity Q-factor is 10*, it is necessary
to have Q/w; at least equal to 10~%; this is satisfied provided the internal power is
about 1 GW cm 2. As long as the nonlinear material fills the entire cavity, a change
in the cavity length does not affect 3; to increase 3 we thus have to increase y?
shifting the operating frequency closer to the gap edge or changing the nonlinear
medium.

The validity of the present calculation is in any case limited to case of well-localized
modes inside the cavity; the case of a dielectric microcavity with DBR mirrors opti-
mized for reflection at both the fundamental and at the harmonic frequency (FASH
mirrors®’) would give much more freedom in the choice of the reflection phase at
the two mirrors, but at the same time the optical modes would penetrate inside the
mirrors and an active material concentrated in the cavity layer would not be the
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best alternative any more; in this case it may be better to distribute the nonlinearity
along the whole structure. Although such an arrangement has revealed to be useful
for optical bistability and optical “transistor” effect (sec.2.3-2.6 and ref. 64,70,75), it
has not been studied yet for optimizing second harmonic generation.

Two-photon absorption spectroscopy has been an important tool for the characteri-
zation of electron-hole states in quantum wells: the two-photon absorption spectra
taken at w ~ FE¢/2 show in fact sharp features due to subband quantization and
excitonic effects.'" 1% In particular it has been possible to clearly resolve some ex-
citonic peaks. Provided their linewidth is sufficiently small, these transitions seems
to be a good candidate for the observation of our coherent two-photon effects.

Since the sharpest features are present in TM polarization (¢ || 2), it can be favorable
to work at oblique incidence. This is not a problem, indeed it gives the possibility
of tuning the photonic fundamental mode with the angle, while the excitonic fre-
quency stays nearly constant. A detailed calculation of the two-photon absorption
cross-section in GaAs/AlGaAs heterostructures has been performed by Shimizu.*®
For example, conversion of his results for the c¢;lh,, 1.5 exciton into generalized oscil-
lator strengths brings to the result of about f{%) ~ 2. 10729 cm®. It can be interesting
to notice that, if we assume a linewidth of 1 meV for the exciton and a well spacing

of 10nm, this value corresponds to a resonant y® of 1.2 - 10~ 8esu.

Moreover, under a strong static electric field parallel to the growth axis, some exci-
tonic transitions can be allowed for both one- and two-photon absorption because
of parity symmetry breaking.” But an externally applied static electric field is not
the only solution: several papers have appeared which investigate the problem of
breaking the symmetry of a material system in order to make some optical sus-
ceptibility non-vanishing. In particular, asymmetrically grown quantum wells®-1%
and indirect excitons in polytype double-quantum-well structures'®® have recently

received much interest.

Let’s consider a microcavity of length L and dielectric constant e bounded by metal-
lic mirrors and containing N,, identical quantum wells situated at positions z;_y,
all corresponding to antinodes of the electric field; in this case the generalized oscil-
lator strength £ (z) is given by

FO@) =3 Ny fino(a — ;) (3.46)
=1
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Explicit integration of eq.(3.40) then brings to the result:

W
Brea = L—;\/ 24N, (3.47)

Using again eq.(3.43) and eq.(3.41), the Rabi frequency can be written as function of
internal light intensity 1;,, as:

Q \/ 24 ) Noym2 Iy (3.48)

w1 Le32hw e

As previously, let’s quantify the effect in terms of the internal intensity needed in
order to have Q/w; = 107%. Inserting the numerical values for the quantum well
excitonic transition and supposing the cavity to be a \/2 cavity containing about 10

quantum wells, we obtain an internal intensity of about 600 MW cm 2.

While in the SHG case the main limitation on light intensity comes from unavoid-
able heating effects, in the TPA case it is necessary to pay attention also to the
fact that excitons behave in a bosonic way only at low densities 1., < ngq, i.e.
when their mean spacing is much larger than their radius. As we have already
discussed in sec.2.4, at higher densities, both screening effects and the fermionic
nature of the underlying electrons and holes contribute to bleach the excitonic tran-
sition. Remembering that the total population of excitons per unit area is given by
| A3* and assuming the excitons are equally distributed among the wells, it follows
from eq.(3.9) that the excitonic density in each well has the expression

2 1 .
N, B>

inserting in this expression a realistic value for 3 in GaAs structures, it results that

Q2

exc — A 2 Nw:
" | 2|/ 2wL—w2+i’)/2

(3.49)

the two-photon Rabi splitting should be observable in GaAs structures before the
exciton is bleached, while for the instabilities and the TPOSE gain the required
excitonic density seems much higher than the typical saturation density of about
nsat = 3 - 10" em™2. However, an increased value of the nonlinear coupling 3 and
of the number of wells N,, should allow for the same nonlinear effects at a lower
excitonic density.
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Conclusions and perspectives

This first part of the thesis has been devoted to the study of a few interesting non-
linear optical effects which can be observed in semiconductor DBR microcavities;
after a short review on their most important properties at linear regime (chap.1),
we have discussed the behavior of microcavities grown with materials showing an
intensity-dependent refractive index (chap.2). Depending on the geometrical and
the material properties of the system, as well as on the operating frequency, both
optical limiting and optical bistability have been predicted to occur for reasonable
values of the light intensity. With an eye to applications, we have briefly discussed
how such effects can be eventually exploited for an all-optical processing of signals:
specific configurations which may result useful for either the amplification of an op-
tical signal (optical transistor) or the realization of an all-optical bit of memory have
been pointed out.**”%7

In the last chapter (chap.3) we have given a detailed analysis of resonant two-photon
nonlinear processes such as second harmonic generation and two-photon absorp-
tion and, in particular, we have discussed their signatures in the single-beam trans-
mission spectrum through the microcavity as well as in two-beam pump-and-probe
experiments.”®”” Although the calculations have been performed using a very sim-
ple model which involves only two bosonic modes nonlinearly coupled by a cubic
term, we have shown how this approach can be applied to describe any experi-
mental arrangement: all the relevant details of the actual configuration are in fact
summarized in a small number of parameters.

Since the nonlinear optical susceptibility of current materials is in general very
weak, a large number of photons is generally required in the cavity mode in or-
der for nonlinear effects to be important; for the single-mode nonlinear cavity of
sec.2.2, the critical number N, = ~v,,/w,; is a good estimate of this quantity, since it
gives the number of photons which have to be present in the cavity mode in order
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for the nonlinear shift to be equal to 7,, and therefore for the transmission to be
substantially modified.

Starting from such a consideration, it has been natural to perform the calculations
neglecting the discrete, quantum, nature of the field and apply classical electro-
dynamics in continuous media with a nonlinear polarizability; with respect to the
operator-valued quantum master equation which is required for the description of
a quantum field, classical electrodynamics leads to much simpler and physically
transparent calculations. The use of classical electrodynamics can be justified as
arising from a mean-field (MF) approximation on the light field: the field operators
are replaced by their mean values and all their products are assumed to factorize;
this is equivalent to neglecting all fluctuations around the mean values of the fields,
which is generally true provided the population of the modes under examination is
very large.

Although conventional semiconductor DBR microcavities are well within such a
N, > 1 regime, the recent developments of photonic cavities with very large Q-
factors and very small mode volumes and of optical materials with very strong
nonlinearities has pushed the optical community towards the study of systems in
which the critical number N, < 1 and therefore the nonlinear effects are triggered
by a very small number of photons. In such systems, in fact, the quantum state of
the light field can be manipulated down to the single quantum level and definitely
nonclassical states can be generated.

As we shall discuss in detail in chap.4, the light field in a nonlinear material and
the interacting atomic Bose gas can be both described as a Bose field with a quar-
tic interaction term in the Hamiltonian; despite the profound physical differences
between the two systems, analogous results have therefore to hold for the transmis-
sion of such Bose waves through single-mode cavities. In the case of atomic matter
waves, single-mode DBR cavities showing well separated cavity modes with nar-
row linewidths and tight longitudinal confinement can be obtained using optical
lattices (chap.5). Thanks to the very strong intensity of collisional atom-atom inter-
actions, very low values of the incident atomic flux are required for the observa-
tion of nonlinear atom optical effects. Provided transverse motion is appropriately
frozen by a single mode waveguide, the nonlinear coupling coefficient w,,; of the
cavity resonance can be comparable or even larger than the mode linewidth ~.

Given the strict analogy of the behavior of light and matter waves, we shall post-
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pone to the third part of the thesis the detailed discussion of the validity range of the
mean-field approximation and the nonclassical effects that can be observed when
this approximation breaks down; the same physical model can in fact be success-
fully applied to both Bose fields, irrespective of their profoundly different physical
nature. Thanks to its formal simplicity, the single mode system of sec.2.2 is well
suited for a direct numerical integration of the quantum master equation (chap.6).
For the case of a weak nonlinearity NV, > 1, the mean-field results will be recovered;
for the case of a strong nonlinearity N, < 1, peculiar quantum features will be found
in the correlation functions of the transmitted beam.
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Introduction

In the last years, several authors have emphasized the close analogy between the re-
cent developments in the field of coherent atom optics and the fundamental steps of
nonlinear and quantum optics following the realization in the late fifties of the first
optical lasers. The coherence properties of atomic Bose-Einstein condensates (BECs)
are in fact very similar to the coherence properties of laser light: both of them are in
fact well described by classical C-number fields and fluctuations can in most cases
be neglected; in the case of light, the field under examination is the electromagnetic
field, while in the atomic case it is a Schrodinger matter field.

Since the development of laser cooling techniques, both the luminosity, the mono-
chromaticity and the collimation of atomic beams has been substantially improved
in the last decades and most of the fundamental elements of the optical bench are
now available for applications, such as atomic beam splitters and diffraction grat-
ings for matter waves; atomic interferometers look in fact very promising as gravi-
tational and inertial sensors. Since all these experiments do not involve atom-atom
interactions, they are not sensitive to the higher-order coherence functions of the
incident atomic beam and are well observed with thermal atomic beams which are

the matter analog of the light emitted by a conventional lamp.

On the other hand, nonlinear atom optics has started to be considered only in the
last years, after the realization of atomic BECs and the consequent extraction of
coherent matter waves: nonlinear optical effects require in fact a larger luminosity
and are sensitive to the coherence of the input beams; for this reason, they could not
be easily observed with non-degenerate thermal sources. While temporally finite
pulses can be obtained by coherently extracting atoms from a previously formed
trapped BEC, a continuous wave source has not been realized yet, although it is
actually the subject of active work, the main difficulty obviously consisting in the
lack of an efficient refilling mechanism for the parent condensate.
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This second part of the thesis is devoted to the study of the atom optical properties
of the massive atomic bosonic field; in particular, thanks to the fundamental analogy
between light and matter waves, we shall try to export into the realm of atom optics
all the concepts we have discussed in the previous part of the thesis for the case of
photon optics in dielectric structures such as DBR microcavities.

In the first chap.4, we shall review the main points of the analogy between light
and matter waves; in particular, we shall see how each of the terms appearing in
the Hamiltonian for the atomic field has a simple physical interpretation in optical
terms. The external optical or magnetic potential to which atoms are subjected can
be seen as a dielectric constant for matter waves; the atomic spin corresponds to
the polarization of an electromagnetic wave; the s-wave atom-atom collisional in-
teractions can be reinterpreted as a local nonlinear intensity-dependent refraction

index.

As in the first part of the thesis we have always approximated the electromagnetic
tield as a classical field, a similar mean-field theory is currently adopted for the
description of a coherent atomic field, leading to the well-known Gross-Pitaevskii
equation, which gives accurate predictions for the dynamics of dilute Bose con-
densed clouds at very low temperatures, when the non-condensed fraction can be
considered as negligible. After a brief review of the most relevant exact approaches
to the complete many-body problem together with their difficulties, the chapter is
concluded with a detailed discussion on the main points of mean-field theory, in
particular the underlying all-order coherence assumptions, the experimental confir-
mations and the validity limits.

In the following chap.5, the interaction of atomic waves with optical lattices is dis-
cussed and the transmission and reflection properties of an atomic beam charac-
terized in terms of atomic Bloch waves in the nearly periodic potential of the lat-
tice: this periodicity allows in fact for a substantial reduction of the effective atomic
mass, while the spatial modulation of the lattice parameters provides the confine-
ment needed for the quantization of atomic motion and the consequent appearance
of discrete localized states which are the atomic analog of the optical modes of DBR
microcavities. At linear regime, the transmission spectrum of such a system when
driven by a coherent atomic beam is characterized by a rather large reflecting win-
dow corresponding to the forbidden energy gap of the lattice and sharp peaks cor-
responding to resonant tunneling processes on the discrete states. Given the rather
large mode spacing and the tight confinement of the mode wavefunction, for grow-
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ing incident intensities nonlinear effects are expected to give rise to atom optical lim-
iting or atom optical bistability; thanks to the much stronger collisional atom-atom
interactions with respect to photon-photon interactions in a nonlinear material, the
bistability threshold is predicted to occur at a very low value of the atomic flux.

We conclude the chapter discussing two possible methods for the experimental de-
termination of the coherence length of an actual atom laser source: while the coher-
ence of a trapped BEC is now a well-established fact, a direct measurement of the
coherence properties of a propagating beam is not avaiable yet and, in particular, it
is still an open question whether the atom laser can have a coherence length longer
than the parent condensate. Both the schemes we propose are based of the reflection
properties of atomic mirrors; the first one exploits the frequency dependence of the
transmittivity of an optical lattice in order to separate the different velocity classes in
the beam and thus determine its spectral distribution. The second scheme is based
on the diffraction of light on the density profile of the atomic standing wave which
is formed in front of a nearly perfect atomic mirror: since the coherence length of
the standing wave is related to the coherence length of the atom laser, a measure-
ment of the latter can be performed just by looking at the angular linewidth of the
diffraction peaks.
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Chapter 4

Atom optics fundamentals from a
quantum optics point of view

This chapter is devoted to a brief review of some concepts of atom optics, Bose-
Einstein condensation and atom lasers from the point of view of quantum optics;
this approach to the properties of ultra-cold Bose gases is complementary to the
many-body approach more familiar to condensed matter physicists. The main pur-
pose of the discussion will be to stress the fundamental analogy between the be-
haviour of light waves in dielectric (eventually nonlinear) media and the behaviour
of interacting matter waves in external (optical or magnetic) potentials: the strong
cross-fertilization effect which has arisen from such parallelism has in fact helped
us to get a deeper as well as more intuitive picture of both systems.

In sec.4.1, the Hamiltonian for an interacting Bose gas subjected to an external po-
tential is introduced and a simple physical interpretation of each term is given from
the point of view of optics: the external potential is show to give a sort of refractive
index for matter waves, the atomic spin is the analog of the polarization vector and
the atom-atom interactions provide the optical nonlinearity for matter waves. This
discussion will be completed in sec.4.2 with a review of the different approaches that
can be adopted for the solution of the bosonic many-body problem: after some gen-
eral words on the available exact methods together with their limitations, a specific
attention will be paid to the mean-field theory together with the all-order coherence
assumptions which underlie it. A more detailed study of the nonclassical effects
and the dynamics beyond the mean-field is postponed to chap.6, while the discus-
sion of our stochastic wavefunction approach to the bosonic many-body problem is



92

Atom optics

the subject of chap.7.

4.1 Field-theoretical approach to atom optics

The Hamiltonian of an interacting Bose gas is usually written in terms of the Bose
field operator W(z) as

H = / dz U'(z) {—%W + vext(x)} U (z)+
+ %//dx de’ U ()0t (2 V™ (2 — )T ()P (2); (4.1)

the first two terms describe the single particle dynamics in an external potential
Ve, the third term accounts for atom-atom interactions, modeled by a two-particle
interaction potential V™ (z —2'). As usual, the field operators are assumed to satisfy
the Bose commutation relations [\i/(x), Ot (2! )} =d(x —2').

Immediate is the generalization to the case of a multicomponent gas, in which atoms

in different internal states coexist:

< )Z /d“” V@) + 2, [ @ @)+
T3 Z / / dx do’ Ul ()Wl (2 )V (2 — &) Up(2) Uy (2); (4.2)

zgkl

the atom field is now described by multicomponent field operators W;(z) satisfying
the Bose commutation relations [\ilz(x), \ilj(x’ )} = 0(z — 2')0; ;. The index i runs
over the possible internal states, which can be either different Zeeman sublevels of
a single hyperfine level, or sublevels belonging to different hyperfine levels, or even
different atomic species.

As a very simple example, a spin F' = 1 atom is described by a three-component
atom field \ill(x) ; in this case, besides the usual angular momentum mp = 1,0, -1
basis, a Cartesian z, y, 2 basis can be adopted, in which the three components trans-
form as the three components of a vectorial quantity like the electric or the magnetic
field."° Atoms with larger values of the spin, are instead described by more com-
plex tensorial quantities: spin F' = 2 atoms correspond, e.g., to traceless symmetric
second-rank tensors.
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While the kinetic term generally has a diagonal form®@
= V(@) VP (), (4.3)

the external potential term

> U@Vt (e, 1)y (x), (4.4)

involves a two-indices quantity V;*(z,?): the diagonal terms V" account for the

ext

external potential to which each sublevel is subjected, while off-diagonal terms V7

account for transitions between different sublevels induced by stationary or time-
dependent optical, microwave or rf fields.

The interaction term, involving the product of four field operators has an even more
complicate structure

> Vitale — 2" )Ul(2) W) () by (2) Ui(2), (4.5)

with the interaction potential V;} ,(z — 1) being a four-indices quantity. If the limit
our attention to the case of ultra-low collisions, we are allowed to neglect all collision
channels other than the s-wave one and to replace the interaction potential with a
simple contact potential

Vzl?tkl(x —2') = zl?tkl (z —a'); (4.6)

the detailed shape of the interaction potential starts in fact to be important only at
larger values of the kinetic energy.

Thanks to the isotropy of space, symmetry arguments allow to considerably reduce

int

the number of the independent components of the tensorial quantity V;J ;; as an

110,112

example, in the case of two spin 1 atoms, s-wave collisions are described on

just two scattering lengths, a, for the J;,; = 0 channel and a, for the F},, = 2 channel

A h?
M

@More precisely, the kinetic term is diagonal only if we choose the same basis for the polarization

‘/hn —

(aaPs + agPy) = <Co + 02131 : ﬁz) ; 4.7)

states at all spatial positions. In photon and atom optics, this is generally the case, but for the case
of magnetically trapped atoms. In this case, a polarization axis parallel to the local magnetic field is
instead chosen: at low temperatures, however, the non-diagonal kinetic terms result much smaller

than the Zeeman splittings and can be then safely neglected thanks to an adiabaticity assumption.!!!
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P, denote the pr0]ector operators which project the pa1r of colliding atoms into a
total spin s state, F, is the spin operator of the o™ atom and the ¢, are defined
according to

Amh?

o = L (ao + 2a2) /3 (4.8)
Amh?

¢ = — (- a) /3 (4.9)

The scattering length a; for the Fi,; = 1 channel is actually not relevant, since the
bosonic nature of the undistinguishable colliding atoms fixes the wavefunction to
be symmetric with respect to the exchange of the two colliding atoms.

The Heisenberg equation of motion for the Bose field

. ; ) )
indY) W Gag Z V(@) i(e) + ) Vil V(@) Ui(e)Wi(z) - (4.10)

Jkl J
7.k,

which follows from the Hamiltonian eq.(4.1) has a form which is very similar to
Maxwell’s equation eq.(1.2) for the electromagnetic field in a nonlinear material
medium with an intensity dependent refractive index; in this analogy, the exter-
nal potential V*(x) corresponds to the dielectric constant ¢; ;j(z) of the material
medium and the interaction term V%, ; to a spatially uniform, local and frequency-

flat third-order nonlinear susceptibility x; j)7 it

In eq.(4.7), we have exploited the isotropy of space in order to write the interac-
tion potential of spin 1 atoms in terms of the two only independent parameters a
and a, which characterize its strength; given the analogy with a third-order nonlin-
ear susceptibility, this writing provides a simple way to determine the independent

parameters which define the XE?} pi(—w;w, —w, w) of an isotropic material.

As photons are bosonic particles, the F},, = 1 channel is irrelevant if the frequencies
of the four photons which are involved in the optical process are equal, as it happens
in the XE? pi(—w;w, —w, w) susceptibility. We are therefore free to fix the correspond-
ing scattering length a, to any value without changing the physical predictions;!!*
in other words, adding to V', ; the terms which correspond to an Fy,; = 1 channel
does not change the interaction energy, since their contributions are canceled out in
the final sum over the three polarization indices j, k£, [. In particular, if we choose

a; = as, the interaction matrix can be rewritten as

Arh? A h?

int __
V= M M

<a2732 +aPr + CLOP0> = <a21 + (ao — a2)P0>; (4.11)
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given the simple form of the P, projector in the Cartesian basis

1
730:g\xx+yy+zz>(xx+yy+zz\, 4.12)

it is immediate to rewrite the interaction matrix as

. 47 h? N —
th:_L a22|z,])<z,j|+Lﬂ\x;ﬂ+yy+zz>(az$+yy—l—zz\. (4.13)

.3

This result can be immediately translated in the language of susceptibilities

by + 20y
€xaze = Cyyyy — €zzzz = 3 (414)
by — by
€xayy = Cyyzx = €xxzz = €zzax = €zzyy = Cyyzz = 3 (415)
€xyzy — Cyazyzr = €xzrz = €zzza = €zyzy = Cyzyz — b2 (416)
ECxyyr = Cyzxy = €xzze = €zzxz = Cyzzy = Cazyyz — 07 (417)

where b, are proportional respectively to ag .

On the other hand, the Fj,, = 1 term may result important if we are interested
in interactions which involve distinguishable particles for which Bose exchange
symmetry does not hold; in particular, this is the case for a nonlinear susceptibil-
ity x®(—w1;ws, —ws,ws) which involves different frequencies. In this case, a term

proportional to the projector
1
P = 5 lyz — 2y )(yz — 2yl + |22 — vz ) (20 — 22| + |2y — yo ) {2y — y;g|] (4.18)

has to be introduced in V;"" ; and its effect is no more canceled in the sum. Such re-
sults are in perfect agreement with the tables of susceptibilities that can be found in
nonlinear optics books such as [6, pag.302] and that have been determined by means
of completely different arguments. In particular, the three independent matrix el-
ements which characterize the third-order nonlinear susceptibility of an isotropic
material are nothing else than linear combinations of a¢, a; and ax.

In actual experiments, a static and conservative external potential Ve (z) can be
applied to the atoms in two different ways,® using either a magnetic field, or a far
off-resonance laser field. In magnetic traps, the atoms are subjected to a magnetic
potential given by —ji- B, where /7 is the magnetic dipole moment of the atomic state
under exam. Such a potential has a different sign according to the internal state of
the atom: states in which the magnetic moment is anti-parallel to the field are called
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weak-field seekers since the atom results attracted by field minima; states in which
the magnetic moment is parallel to the field, are instead strong-field seeker ones since
the atom results attracted by field maxima. In practical cases, since local maxima of
the magnetic field modulus can not be achieved in regions of space where current
vanishes, only weak-field seeker states can be actually trapped.

Provided the atomic motion is slow enough, the orientation of the atomic magnetic
moment adiabatically follows the direction of the magnetic field: in such a case,
spin-polarized atoms preserve their polarization during their motion and a descrip-
tion in terms of a single (yet spatially dependent) internal state subjected to a local
potential proportional to the field magnitude is accurate.!"" Quantitatively, such an
approximation is valid provided the variation rate of the magnetic field experienced
by the atoms during their motion is much slower than the Larmor precession fre-
quency of the magnetic moment, i.e. the Zeeman splitting of the magnetic sublevels.
This is generally the case but at the points at which the magnetic field vanishes: here
Majorana spin-flip transitions to untrapped states occur which result in atom losses
from the trap.

In optical traps, atoms are subjected to an optical potential arising from the optical
Stark shift of the atomic levels dressed by the laser field: if light is blue-detuned
from the atomic transition, the ground state is raised in frequency, while it is low-
ered if light is red-detuned. This means that an atom is attracted towards high field
regions in case of red detuning and towards low field regions in case of blue detun-
ing.! From a different point of view, laser light induces an oscillating electric dipole
d in the atom which, depending on the relative detuning 6 = w;, — w,, can be either
parallel (§ < 0) or anti-parallel (§ > 0) to the electric field E; from these considera-
tions, together with the explicit form of the atom-field interaction energy —d - E, the
sign of the optical force is immediately explained.

In the case of far-off resonance laser fields, the detuning ¢ is almost the same for all
Zeeman sublevels of a same hyperfine state so that the potentials experienced by
each of them have the same sign and therefore spin-flip transitions are no longer
dangerous for trapping. At the same time, spontaneous emission effects are them-
selves depressed in far-off resonance traps: since the optical potential V, is pro-
portional to I;,0~! while the spontaneous emission rate I'y, is proportional to the
excited level population P. and hence to 15,672, the spontaneous emission rate Iy,
can be made negligible at a constant value of V,,; just by compensating the enhanced
detuning § with a stronger laser intensity /..
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The recent experiments on Bose-Einstein condensations have mostly used magnetic
traps for confining the atom cloud and performing evaporative cooling: such a use
relies on the possibility of having a large depth (up to 1mK) and selectively ex-
tracting the most energetic atoms. In order to avoid Majorana spin-flip processes
with the consequent losses of atoms, clever magnetic field configurations have been
envisaged, such as the cloverleaf,'"> ¢ the baseball''’"11® and the TOP' traps; reduc-
ing appropriately the background pressure, lifetimes as long as a few ten minutes
has been observed. The typical oscillation frequency of atoms around the bottom of
magnetic traps are generally at most of the order of hundreds of hertz, with a spatial
size for the ground state of the order of a few microns.

The use of optical dipole traps looks promising from several points of view: first of

all, all spin states can be trapped in the same trap'* 1%

with a trapping frequency
generally higher than the one of magnetic traps; in addition, three dimensional
standing wave patterns can be obtained in which the trap sizes are comparable or
even smaller than the laser wavelength.'?!? Depending on the lattice intensity,
atoms can be either bound at the minima of the optical potential or move with a
dispersion law typical of periodic systems, with allowed bands and forbidden gaps;
most remarkably, the effective masses of the atoms in such lattices can be much
smaller than the free-space one.'**'* Disadvantages of the optical potentials are the
unavoidable spontaneous emission processes and the inability of performing evap-
orative cooling in the traditional way; cooling techniques based on different ideas

are however being actually developed.* 12

While the photon-photon interactions which are described by a Kerr nonlinear sus-
ceptibility result from the interaction of light with matter and can hence be tuned
by an appropriate choice of the material in which light propagates, atom-atom in-
teractions are determined by the internal electronic structure of colliding atoms.

However, by applying external magnetic'¥ 1% 130,131

or optical fields, it is possible
to induce slight changes in the internal electronic structure of the atoms which can
eventually result into dramatic changes of the collisional properties. Very remark-
ably, in the presence of a quasi-bound molecular state, the scattering length can be
resonantly enhanced of several orders of magnitude just by tuning the energy of
the quasi-bound state close to the energy of the colliding pair. As in optical media
dissipative processes are generally associated to any resonantly enhanced optical
susceptibility, such Feshbach resonances in the elastic s-wave collision cross-section

are generally associated to enhanced three-body recombination rates,®*'3* which
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are the atomic analog of nonlinear absorption in photon optics.

4.2 The many-body problem of the interacting Bose gas

Whenever the nonlinear interaction term in the wave equation eq.(4.10) for the mat-
ter field W;(z) can be considered as negligible with respect to the other kinetic and
external potential terms, the Bose field can be approximated as a free field so that the
theory, being now a single particle one, can be exactly solved irrespective to the spe-
cific quantum state of the field; more precisely, the evolution equations for any corre-
lation function of the field give at each order a closed set of Schrodinger-like partial
differential equations. As simplest examples, the mean-field v;(z,t) = <\ilz(x, t)>
satisfies the Schrodinger equation

. adjl(x?t) ex

ih—o= = v%l (z,t) + Z VE (2)y (2, 1), (4.19)
while the one-body density matrix p; ;(2/,t;2,t) = <\ifj(x’ )T (z, t)> satisfies the
more complicate equation

pri(a’ thx,t) + Z VSt (@) pr ('t . t). (4.20)

In sec.5.4.2 we shall make use of this equation in order to determine how the trans-
mission of an atom laser beam through an optical lattice depends on its first-order
coherence length. If the initial state is a coherent one, its all-order coherence is not
destroyed by the interaction with any sort of conservative external potential.

On the other hand, a general and tractable theory able to give exact results for the the
interacting Bose gas described by the complete Hamiltonian eq.(4.1) is still not avail-
able in the general case; only simplified models which involve only a few modes of
the atomic field have been solved in an exact and complete way. Among these, the
most relevant ones are the Josephson junction, modeled as a double trap,'® and the

136

phase conjugation mirror;* in both cases, only two modes of the Bose field are in

fact involved.

For the general case of spatially distributed gases in which a large number of modes
are actually involved in the dynamics, several approaches have been developed,
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each with its specific purposes and range of applicability: some of them are exact,
other approximated; some of them are analytical, other numerical.

For the study of thermodynamical equilibrium properties, quantum Monte Carlo
(QMC) techniques are currently used,'® % based on Feynman'’s path integral for-
mulation of quantum mechanics. Besides their well-known computational diffi-
culty, such methods have several limitations: since they explicitely work in coor-
dinate space, Hamiltonians which are not real in such a representation can not be
handled: unfortunately, this is the case of vortices in Bose-condensed clouds.

For study of dynamical properties, QMC techniques, based on an imaginary-time
evolution, are not suited and completely different approaches have to be used:
quantum kinetic theories have been recently developed for the study of the forma-
tion of the condensate and of the dynamics of the non-condensed fraction;'**"">° un-
fortunately the corresponding calculations are quite heavy for spatially distributed

systems.

In quantum optics, the study of interactions between light fields in nonlinear me-
dia has been often performed using the so-called “semiclassical” distribution func-
tions for the Bose field;*1°!1>2 depending on the ordering of the operators we are
interested in, either Glauber’s P-distribution,'>*'>> Wigner’s W-distribution or the
Q-distributions can be used. In such approaches, the dynamics of the nonlinear
system under examination is reduced to a Fokker-Planck (FP) system of partial
differential equations which is in practice solved by means of the corresponding
stochastic (Langevin) equation; in this way the numerical complexity of the prob-
lem is sensibly reduced with respect to the original FP equation. Unfortunately, for
some most relevant systems such as the nonlinear single-mode Fabry-Perot cavity
of sec.2.2, the FP equation does not have a positive-definite diffusion term, so that
the usual rewriting in terms of stochastic evolution is not possible and the numeri-
cal treatment has to be done directly on the FP equation;'*® in addition, the P- and
the W-distributions are in general not positive and sometimes even not real, so that
it is not possible to give them an interpretation in term of a probability distribution.

These difficulties have been overcome by the introduction of the Positive-P rep-

resentation by Drummond and Gardiner,!*” 1%

which gives positive-definite diffu-
sion terms for the most relevant physical systems as well as a distribution func-
tion which, being always positive, can be interpreted as a true probability distri-

bution;™ this at the expense of doubling the number of variables involved in the



100

Atom optics

theory. The Positive-P method has revealed to be a fundamental tool for the study
of a number of quantum optical systems,* such as the nonlinear FP cavity,'® the

optical parametric oscillator,61162 163,164

quantum solitons, . As the only limitation
of the Positive-P approach, for sufficiently strong nonlinearities, the solution of the
stochastic equations exists only for a short time interval, after which divergences oc-

cur in the sense that the trajectory is expelled towards infinity in a finite time.!®>-1¢

In the last years, the positive-P distribution has been applied to the study of in-
teracting atomic gases: since atom-atom collisional interactions are generally much
stronger than photon-photon ones in a nonlinear medium, the divergences are even
more problematic in the atomic case than in the photonic case.'”’ Interesting re-
sults on the formation of the condensate can however be obtained with such a tech-
nique provided the system has an intrinsic damping mechanism; in particular, this

is the case for the formation of a condensate from a evaporatively cooled an atomic
cloud.'”!

In addition to the Langevin equations which arise from the representations of the
Bose field in terms of semiclassical distribution functions, stochastic methods have
been widely applied to quantum optics for the description of quantum noise effects.
The most celebrated of this methods is certainly the so-called Monte Carlo wave-

function method,!7?-17¢

in which the usual master equation for the density matrix of
the system is replaced by a stochastic Schrodinger-like evolution equation for the
wavefunction: fluctuation and dissipation effects due to the coupling with the ex-
ternal reservoir are taken into account by quantum jumps which occur at random
times during the otherwise conservative evolution of the system. This stochastic
wave-function method provides new insight in the phenomena and allows for ac-
tual calculations on problems which would otherwise be exceedingly complicated

if treated via the master equation.

In chap.7, the principles of a new exact and numerically tractable approach to the
problem of the interacting Bose gas are discussed,'”” an approach which is not re-
stricted to thermal equilibrium of the gas but allows for the description of its time-
evolution. In this approach, all the atoms share a same wavefunction which is let
evolve according to a stochastic differential equation; under appropriate conditions
on the specific form of the stochastic evolution, the exact dynamics of the many-
body system is recovered, together with all the quantum correlations which may
appear in the quantum gas following the atom-atom interactions. Thanks to the fact
that the conditions for recovering the exact dynamics do not completely determine
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the form of the stochastic equation, we can find different schemes with profoundly
different statistical and stability properties. One of such schemes is a reformulation
from a different point of view of Positive-P representation and therefore leads to
stochastic differential equations which suffer from divergence problems; the gen-
erality of our method however allows for other schemes to be found which can be
mathematically proven to have a regular solution for all times. For such schemes,
the only limitation turns out to be the computational time: in particular, the numer-
ical effort increases almost exponentially with the duration of the time evolution.
A few examples of application of this method to simple systems are discussed in
sec.7.3 and 7 .4.

4.2.1 Coherent matter waves, Bose condensates and the mean-field

approximation

Throughout all the discussion of nonlinear optical effects contained in the first part
of the present thesis we have always assumed all-order coherence for both the light
and the excitonic fields which were involved in the effect under examination. It
is a well-known result of quantum optics that a laser above threshold emits light
whose statistical properties closely resemble the ones of a classical all-order coher-
ent beam;* 1°1/152.178 35 we shall see in more detail in sec.6, if we furthermore assume
that the nonlinear coupling inside the cavity is small enough, it can be proven that
the coherence of the incident beam is transferred to the cavity as well as to the trans-
mitted fields. Such an assumption has the immediate consequence that all operator
products involved in the theory are factorizable and all the dynamics can be ex-
pressed in terms of the mean value of the field alone. In this way, a complicate
operatorial-value master equation is replaced by C-number nonlinear partial differ-
ential equations which can be treated by conventional techniques; for the case of
light, such mean field (MF) equations are nothing else than Maxwell’s equations in a
nonlinear dielectric medium.

A similar approximation is currently done for the description of the matter waves
which are associated to a Bose condensate: if the nonlinear interaction term in
eq.(4.10) is assumed to be factorizable, the resulting MF equation for the mean value

~

U(x,t) = <\If(a:, t)> of the atomic matter field is the well-known Gross-Pitaevskii
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equation:'”-18!

O )(x) = 0T (0) + Veae(2)2) + Ve o)) (4.21)

As it is well known from equilibrium thermodynamics, a Bose gas well below the
condensation temperature is correctly described as a coherent field provided it is
dilute enough:'® in terms of the density n and the scattering length q, the diluteness
condition reads as vna® < 1. Current trapped atomic Bose-Einstein condensates
(BEC) well satisfy such a limit, while in the case of superfluid helium the interactions
are too strong.

From the experimental point of view, the assumptions of mean-field theory have
been confirmed by the direct measurement'® of a few low-order coherence func-
tions of trapped BECs: in the framework of Glauber’s coherence functions,'*>* the

all-order coherence can be reformulated as'®+-1%

g(n)(xbtl; B ;x2n>t2n) -
(W @r,tr) o W @, 1) (i1, ) - Do, o))
— : e : Lr=1. 42
(U, ) B(an, 1)) (B @0, t20) (@20 t20) )

Historically, the first signature of the presence of a Bose condensate in a trapped gas
has been the appearance of a narrow peak in the momentum distribution; in terms
of coherence, this corresponds to the presence of a long-range tail in the first-order
coherence function ¢g(V).

The second-order coherence ¢ (0) = 1 of a condensed cloud has been verified mea-
suring the release energy after switching off the trapping potential:'® the potential
energy stored in the interactions between atoms in the BEC is in fact predicted by
MFT to be equal to the integral

U = 3 [ dz ()" (4.23)

For a non-degenerate beam the measurement'® of the same coherence function has
instead given the expected'”® ¢(?(0) = 2 value for a thermal system. The third order
coherence has been measured!® comparing the three-body recombination rates of
trapped Bose gas in the degenerate and non-degenerate cases: the measured ratio
9P(0)/ gg’])fc(o) = 7.4 + 2 agrees with the theoretical'”® prediction of 3! = 6.
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Besides these measurements, the validity of the mean field approach has been in-
directly verified in many other circumstances, just by comparing the experimen-
tal results with the predictions of Gross-Pitaevskii equation eq.(4.21): as a few ex-
amples, it is worth mentioning the frequencies of the collective excitations of the
trapped BEC,'® the interference patterns of overlapping Bose condensates,'® the
Rabi oscillations between different internal states,'® ! the Bragg scattering of mat-

ter waves'?? and the Bloch oscillations in the periodic potential of optical lattices.!?% 1%

110,136,195

Very recently, four-wave mixing of matter waves has been demonstrated,'*

giving a first evidence of nonlinear atom optical effect.

Although a direct measurement of the coherence length of an atom laser pulse has
not been performed yet, from the well-established coherence properties of a trapped
BEC it is quite fair to infer an analogous all-order coherence for the output beam;
all the output coupling mechanisms actually used to couple atoms out of a trap

197-200 ywhich are

are in fact based on coherently driven electromagnetical transitions,
well described by time-dependent non-diagonal terms in the external potential V"
and are the atomic analog of the partially transmitting mirrors which are currently
used to generate coherent light beams from laser cavities. On such a basis, an atom
laser beam will be always modeled in the following of the thesis as a classical C-
number pulse of Schrodinger field; a pair of possible methods for the experimental

verification of such an assumption are discussed in sec.5.4.

Depending on the specific output coupling scheme and on whether gravity is acting
or not on the atom laser beam, very different regimes can be obtained for the atom

1% impart the extracted atoms a mo-

laser frequency. Raman output coupling devices
mentum kick which is of the order of the single-photon recoil and can be tuned by
varying the geometrical angle between the Raman beams; also the output direction
is freely selected. Radio-frequency and microwave output coupling schemes im-
part a negligible momentum kick to the atoms, which separate from the parent BEC
because of mean-field repulsion and gravity. In the presence of gravity,'” atoms
are accelerated while they fall down; a kinetic energy equal to the recoil energy is
reached after a free fall 1.7 um long for the case of Rb atoms and 40 m long for the
case of Na atoms. Using, e.g., an atomic waveguide, the strong effect of gravity
can be counterbalanced and, in absence of an initial momentum kick, output cou-
pled atoms expand following the mean-field repulsion of the trapped cloud. The
imparted kinetic energy is in this case of the order of the chemical potential and
therefore generally much smaller than the recoil energy.
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In addition to the temporally finite atom laser pulses that can be extracted from
a previously formed trapped condensate, a number of theoretical works have ap-
peared in the last years on possible schemes for generating a continuous wave (cw)

coherent atom beam.?"1-204

For this purpose, the trapped condensate has to be con-
tinuously refilled in order to maintain a stationary state in which the losses due
to the formation of the output beam are compensated by the continuous loading
of new atoms from a thermal cloud. Unfortunately, although several experimental
groups are actually involved in such a research, none of the refilling mechanisms

proposed so far has been yet realized.

While in the non-interacting case the propagation of a beam through any sort of ar-
rangement has been shown not to destroy the coherence of a classical beam, atom-
atom interactions can eventually modify the statistical properties of the beam in a
non-trivial way and possibly lead to nonclassical behaviours.'?*2%2% Ag in the pho-
tonic case, the weaker the interactions, the more accurate the predictions of mean
field theory: for the homogeneous gas, this condition is equivalent to the diluteness
condition vna® < 1; for a driven atomic cavity, we shall see in sec.6 that nonclassi-
cal effects can be important if just a small number of atoms in the cavity mode are
enough for the transmission to be appreciably affected.
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Atom optics in optical lattices and the
atomic Fabry-Perot interferometer

The main topic of the first part of the present thesis has been the study of the prop-
erties of optical cavities with well-spaced modes which are driven by a coherent
incident laser field. Depending on their energy, photons from the incident beam can
be resonantly coupled into the localized cavity mode and then transmitted on the
other side of the system.

In order for such cavities to be useful devices for nonlinear optics experiments, two
principal features are required: a transmission spectrum showing well separated
narrow peaks and a resonant enhancement of the internal intensity with respect
to the incident one; the latter is necessary for enhancing the nonlinear interactions
inside the cavity, the former makes the transmittivity a very sensitive function of
the nonlinear frequency shift.

Although magnetic and optical traps are widely used for the manipulation of atoms,
it is not clear how to get large level spacings and narrow linewidths as well as an
appreciable coupling of the cavity mode to the incident and transmitted beam:s.

A very simple proposal have been put forward by Wilkens et al.?"

and, indepen-
dently, by other authors:?1%2!! their model of atomic Fabry-Perot interferometer,
shown in fig.5.1, is composed by a pair of parallel and blue detuned laser beams; in
this configuration, atoms are confined in the space between the laser beams thanks
to the repulsive optical potential. In- and out-coupling is provided by tunneling

processes across the beam waists.
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FIGURE 5.1: Schematic plot of the atomic Fabry-Perot interferometer originally
proposed by Wilkens et al.?® Upper panel: optical arrangement. Lower panel:
optical potential experienced by the atoms.

Two are the main problems presented by such an arrangement: since the character-
istic size L of the cavity region is at least of a few laser wavelengths, the spacing of
the discrete modes generally turns out to be much smaller than the recoil energy.
The energy of the FP modes in a cavity of length L is in fact given by
(n) - ﬁﬂ' 2
rp S G

(5.1)

which, for moderate values of the mode order n, satisfies hw?} K €rece

Furthermore, since the in- and out-coupling processes depend on tunneling pro-
cesses across the barriers, the coupling of the cavity modes to the incident driving
beam is generally very weak so that the corresponding transmission peaks are very
weak as well as very sensitive to asymmetries in the mirror reflectivities.”'®

Our proposals!? 12>

are based on the idea that an effective mass mes much smaller
than the free space mass m can be found in eq.(5.1) provided the atoms propagate
in the periodic potential of an optical lattice. As in the electronic and photonic cases
(sec.1.1), the atomic dispersion in a periodic potential is in fact characterized by
allowed bands and forbidden gaps and its curvature near the gap edge can be made
much sharper than the free-space one; in this case, the mode spacing for a given L

is much larger than in free space.
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As independently @ suggested by Santos and Roso,?*?"® such atomic Bloch waves
can be confined by a slow modulation of the lattice parameters on a length scale L
much longer than the lattice period. This modulation can either be due to the finite
lattice size or even applied from the exterior using a bichromatic lattice; within the
envelope function picture, the local potential for the atoms is in fact given by the
local band edge. Conduction band atoms, for which the effective mass is positive,
are attracted by low potential regions, while valence band atoms, for which the ef-
fective mass is negative, are instead attracted by high potential regions. If such a
potential is strong enough to give discrete quasi-bound states, transmission spec-
tra will be characterized by resonant tunneling peaks: both their spacing and their
intensity can be controlled acting on the intensity, the wavevector and the spatial
size of the lattice. As we shall see in the following, bichromatic lattices look more
promising than simple lattices from the point of view of applications, since they al-
low for quantized states in both conduction and valence bands with an enhanced
coupling to the incident beam.

Nonlinear atom optical experiments can be carried out with such atomic cavities
in close analogy to what has been done for light using DBR microcavities (chap.2):
since the atom optical nonlinearity arising from atom-atom interactions is gener-
ally much stronger than optical nonlinearities, atom optical bistability and atom optical
limiting are predicted to occur at very low values of the incident atomic flux. In ad-
dition, atomic reflection on optical lattices can be used at linear regime for a direct
measurement of the coherence length of an atom laser beam without involving the
parent condensate.

5.1 The simple optical lattice: localized modes and tun-

neling resonances

ConsiderlZS, 212,213

a linearly polarized Gaussian laser beam of frequency w; and
beam waist w,, back reflected by a system of mirrors along a nearly counterprop-
agating direction with the same linear polarization as in the lower panel of fig.5.2;
let 6 be the (small) angle between the two beams, A\, = 27 /k;, = 27c/w,, their wave-

length and E, their central amplitude.

@We regret we have become aware of such papers only long after the publication of our results.
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FIGURE 5.2: The simple optical lattice. Lower panel: sketch of the proposed
arrangement. Upper panel: qualitative behaviour of the optical potential expe-
rienced by the atoms.

In the region of space where they overlap, a lin | lin standing wave pattern is
formed, with a spatial profile similar to the one reproduced in the upper panel of
fig.5.2: a periodic potential of wavevector k; = kj cosf/2 with a broad Gaussian
envelope of length w = w,/ sin § /2212214

|E(2))? = 2| B> e /%" cos® kyz. (5.2)

A monochromatic and collimated atomic beam is sent on the optical lattice along its
axis; assuming the laser frequency w;, to be far from resonance with the atomic op-
tical transition frequency w,, each Zeeman sublevel ¢ is decoupled from the others
and experiences a conservative optical potential

2|dEL* e
h(wp — wat)

_ e 5@'73'1 + cos 2k:lze_zz/2wz

cos® kjz =

VEt(z) = V&U2) by =
(5.3)

proportional to the square modulus of the matrix element of the optical transition d;.
The atomic dynamics in the transverse plane can be neglected assuming a transver-
sally wide optical lattice and modeling the atomic beam as a plane wave: this allows
the calculations to be performed in a one-dimensional longitudinal approximation.
A truly one-dimensional geometry can however be obtained by using an atomic
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waveguide to confine the transverse motion; several methods have been proposed
to obtain such a configuration, the most promising being based on hollow-core op-

215-219 220-225

tical fibers or magnetic fields

At linear regime, a simple numerical integration of the Schrodinger equation
eq.(4.19) in the potential V,**(z) leads to the transmission spectrum for atoms in
each polarization. Two examples of such spectra are reproduced in the left panel
of fig.5.4. Since the atoms are subjected to a potential which is a periodic one with
a slow modulation, we can try to explain the main features of the spectra shown
using concepts typical of solid state physics.”

If the potential does not show any modulation, the atom dispersion in a periodic
potential of the form

vwwz):\@v+-%Re[Ugé%ﬂﬂ, (5.4)

is characterized by allowed bands and forbidden gaps,**% %’

as shown in fig.5.3.
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FIGURE 5.3: Atomic dispersion in a periodic optical lattice with V;/wp, = 0.8,
Vo = 0.

In the nearly free atom approximation, in which the lattice potential V,(z) is assumed
to be weak with respect to the Bragg frequency of the lattice wp, = hk}/2m, the
dispersion of the two lowest bands results given by

) = 9y MO (Y (Vg

2m 2m m
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Remarkably, the curvature of the bands at the gap edges is much sharper than the
free-space one, giving for the effective masses m* = h (d*w/ dk:Q)(_kl:O) the values

1 1 A(hky)? 1 8hwg,
_ L (M7 18 br. (5.6)
m* m mV, m V

c,v

which are both much smaller in modulus than the free-space mass m. As usual, the
mass of conduction band particles is positive, while the mass of valence band ones is

negative.
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FIGURE 5.4: Linear atom optical properties of simple lattices. Left panel: trans-
mission spectra as function of the kinetic energy of the incident matter field.
Right panel: local potential for conduction and valence atoms as function of
the spatial coordinate z. The horizontal lines give the frequencies of the reso-
nant peaks in the spectra and correspond to the bound states of the potential.
Used parameters: ,/wp, = 0.1, kpw = 60 (upper panels) and Q,/wp, = 0.1,
krw = 120 (lower panels).

Since the spatial variation of the lattice parameters is supposed to occur on a length
scale much longer than period of the lattice, we expect that an envelope function de-
scription should be able to explain the spectra®. In such an approach, the atomic
wave function is approximated by the product of the fast-oscillating band edge
Bloch wavefunction and a slow envelope, which satisfy a sort of Schrédinger equa-
tion with an effective mass m* and a local potential given by the (slowly varying)

®)The envelope function approach is used in order to give a physical interpretation to the results
which have been numerically obtained by solving equation eq.(4.19) with the true optical poten-
tial eq.(5.3).



Atom optics in optical lattices and the atomic Fabry-Perot interferometer

111

band edge energy; in the right panel of fig.5.4 we have plotted the band edge fre-
quencies w,, as function of the spatial coordinate z, as they result from the nearly free
atom expressions eq.(5.5) once we substitute the specific values of V,,,(z) = Vi(z)/2 =

hQ, /2
27.2
hwe,(2) = Pk + Vau(2) £

2m

Vi(2)
4

1 1 2 192
= hwp, — A, <§ T —) e~ /2 (5.7)

4

The Gaussian lattice profile reflects in the inverted Gaussian shape of both w.. ,(2):
outside the lattice they tend to wp, and they show a single minimum at the lattice
center. Give their negative effective mass, valence band atoms are repelled by such
a potential minimum, while conduction band atoms, whose mass is positive, are
instead attracted and can eventually be trapped in it. Since the effective mass is
much smaller (of a factor of about 80 for the chosen parameters) than the free-space
one, the quantized motion in such a potential well show energy spacings much
larger than the ones expected for a comparable spatial size but in free-space.

Such a simple model is able to explain the main features of the spectra reproduced
in the left panel of fig.5.4; for kinetic energies w located below the minimum value
of the valence band edge frequency (i.e. its value at the lattice center w,(z = 0)),
transmission is almost complete: incident atoms can in fact couple to valence band
states and freely propagate through the lattice. Since the lattice edges are smooth,
reflections at the interfaces can not occur; hence the absence of the sidebands in the
transmission spectrum which were instead present in fig.1.4. For energies above the
Bragg frequency w > wp,, transmission is again almost complete, since conduction
band states are available for the atomic propagation through the lattice. For energies
comprised in the gap at the lattice center w,(z = 0) < w < w.(z = 0), there is
complete reflection, since the propagation in valence band can occur only up to the
point where the valence band edge becomes equal to w. Afterwards, propagation is
forbidden and atoms have to be reflected back.

Starting from analogous considerations we would expect a complete reflection also
for incident frequencies comprised between the Bragg frequency and the minimum
value of the conduction band edge frequency w.(z = 0) < w < wp,; if the envelope
function approximation were exact, this would be the case, since the discrete state
in the conduction band potential would not be coupled to the incident states. But
the fact the lattice is not uniform gives a small but finite amplitude to non-adiabatic
interband transitions which can couple the valence band incident atoms to the con-
duction band discrete states in the potential well. Resonant tunneling processes
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through these bound states can thus occur, giving the resonant peaks in the trans-
mission that can be observed in fig.5.4. The resonant enhancement compensates
for the small amplitude of the interband jumps, giving transmission peaks which,
in our case of a symmetric potential, grow from a nearly vanishing transmission
up to a nearly complete one; since the coupling to the continuum of incident and
transmitted states is very weak, the peak linewidth is however very narrow and its
integrated intensity very small; this implies a high sensitivity to eventual asymme-

tries in the optical potential eq.(5.3).1%°

An increase in the lattice width w has two main consequences: the increase in the
spatial size of the potential well implies a reduced spacing of quantized modes and
an increase in their total number; at the same time, the slower spatial modulation
of the lattice reduces the amplitude of non-adiabatic jumps, meaning a weaker cou-
pling to the localized mode.
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FIGURE 5.5: Density profile of the localized mode wavefunctions. The parame-
ters are the same as in fig.5.4.

In fig.5.5, we have plotted the density profiles of the atomic wavefunctions when
the incident frequency is tuned at exact resonance with the quantized modes: the
behaviour is the typical one of a quantum-mechanical particle in a one-dimensional
potential well: the order of the mode reflects in the spatial extension of the wave-
function and, in particular, in the number of its nodes. The enhanced particle den-
sity in the potential well for a unity incident flux is a clear signature of resonant
behaviour: the peak density is in fact strictly related to the Q-factor of the localized
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mode; in our specific case, the linewidth results a decreasing function of the mode
order.

An improved version of this scheme will be presented in the next section; using
a bichromatic optical lattice, it will be possible to achieve a tighter confinement of
the discrete mode wavefunction, as well as a more efficient coupling to the incident
and transmitted beams. The more complicate shape of the potential will allow for
localized states also in valence band, for which the coupling to propagating modes
is based on resonant tunneling processes across a potential barrier.

5.2 The bichromatic optical lattice

Consider now a more complicated optical lattice,'* in which the laser field con-
tains two distinct frequencies wy » = wy, £ dwy /2 (dwy < wy), both far off-resonance
from the atomic transition at w,; provided the energy separation % dw;, of the two
components of the light field is much larger than both the hyperfine splitting of
the electronic ground state and the typical kinetic energies of the atoms, the opti-
cal potential can be written as an incoherent sum of the potentials due to the two
frequency components

Vext(2) = {1y cos® [(kr + 6k /2)2] + A cos® [(kr, — 0kr,/2)z + ¢,) } e/ (5.8)

where the effective Rabi frequencies (2, » depend on the Rabi frequencies of the sin-
gle beams and detunings according to /() » = 2 |E1,2d\2 /(w12 — wg). Interference
terms due to processes in which the atom absorbs a photon at w; and reemits a pho-
ton at w, can be safely neglected on the base of energy conservation arguments.

The superposition of standing waves patterns given by eq.(5.8) gives a periodically
modulated optical lattice, in which both the amplitude and the lattice constant are
periodic functions of the spatial coordinate = with a period l,,,s = 7/dk; and a
phase given by the relative phase ¢, of the two standing wave patterns, which can
be controlled acting by the position of the back-reflecting mirror. As previously, the
Gaussian envelope of the laser beams imposes an overall Gaussian profile to the
lattice, setting the total length to w and limiting the number of oscillations actually
present. By choosing the appropriate values for the lattice parameters (¢, = 7/2,
1 > Qy), a symmetric configuration like the one in the upper panel of fig.5.6 can be
obtained, in which the lattice amplitude has a single minimum at its center.
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FIGURE 5.6: The bichromatic optical lattice. Lower panel: sketch of the pro-
posed configuration. Upper panel: qualitative behaviour of the optical potential
experienced by the atoms.

As we have previously done for the monochromatic lattice, the transmission prop-
erties of this bichromatic lattice can be determined by means of a numerical inte-
gration of the Schrodinger equation eq.(4.19) with the appropriate optical potential
eq.(5.8); two examples of spectra are shown in the left panel of fig.5.7.

From eq.(5.8), we can define the mean potential V,,, the lattice amplitude V(z) and
the phase ¢(z) of the optical lattice according to

Vaw(2) = A(21 + Q2)/2 (5.9)
Vi(z) =h }Qleiék“ — Qge_iék“‘ (5.10)
#(z) = Arg (Qlei‘;k” — Qge_i‘%”) ; (5.11)

a spatially varying phase of the lattice means that also the effective wavevector of
the lattice is a spatially periodic quantity, given by

ket (2) = 2k; + dilng(z). (5.12)

Inserting these results into eq.(5.7), we are immediately led to the band edges spatial
profiles plotted in the right panel of fig.5.7. The spectra of the left panel can be
qualitatively explained looking at these potentials, together with the correct signs
of the effective masses, which are positive for the conduction band and negative for
the valence one.
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FIGURE 5.7: Linear atom optical properties of bichromatic optical lattices. Left
panel: transmission spectra as function of the the kinetic energy of the inci-
dent matter field. Right panel: local potential for conduction and valence atoms
as function of the spatial coordinate z. The horizontal lines give the frequen-
cies of the resonant peaks in the spectra and correspond to the bound states of
the potential. Used parameters Q1 /wp, = 0.1, Q2 /wp, = 0.05 and ¢, = 7/2;
dwr/wp, = 1.25-107% and krw = 120 (upper panels), dwy, /wy, = 2.5 - 1072 and
krw = 60 (lower panels).

For frequencies above the maximum value of the conduction band edge frequency

(max

W > We (min)

) and below the minimum of the valence band edge frequency w < wy
transmission is complete, since atoms find propagating states at such frequency for
every z. For frequencies comprised between these two values, transmission is for-
bidden at a classical regime, i.e. if tunneling processes as well as interband jumps
are neglected. Since both conduction and valence band atoms can be confined in a
neighborhood of the lattice center by the potential, atomic motion will present two
series of discrete quantized bound states, coupled to the propagating external states
by processes of two different kinds: as we can observe in the right panel of fig.5.7,
for valence band states, tunneling across a potential barrier is sufficient, while for
conduction band states, interband transitions are required. As usual, such states
appear in transmission spectra as narrow resonance peaks, whose linewidths and
integrated intensities are proportional to the coupling strength.

A simultaneous variation of both w and w,/dw;, by the same factor induces a scale
transformation in the lattice: from the point of view of atomic transmission, a shorter
lattice means a wider spacing of the discrete states as well as larger linewidths: in-
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deed, the amplitude of both tunneling processes (valence band states) and interband
transitions (conduction band states) is enhanced by the reduced characteristic length
of the lattice; all such features can be easily verified comparing the upper and lower

plots of fig.5.7.

In fig.5.8, we have reproduced the transmission spectrum of a different bichromatic
lattice, in which we have tried to improve the mode spacing by using a larger value
of the laser intensities and a smaller length scale. The zero order valence band V0
mode, results now separated from all other peaks by a frequency difference of the

order of 0.1wpg,..
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FIGURE 5.8: Linear atom optical properties of a bichromatic optical lattice:
transmission spectra as function of the the kinetic energy of the incident matter
field. Parameters Q1 /wp, = 0.2, Q2 /wp, = 0.15 and ¢, = 7/2; dwr,/wy, = 0.05
and w = 30/kp,.

Since the lowest gap of the optical lattice always opens up around wg,, this value
shows up to be the characteristic frequency of the FP modes which can be obtained
using optical lattices; this implies that other arrangements would have to be envis-
aged, if we need a mode spacing larger than a fraction of wg,. The use of lattices with
a shorter spatial period can lead to higher values of wg,: this can be obtained either
using n'™ (n > 1) order Bragg scattering processes, which involve n absorption and

226 with the consequent n? increase in wp,, or a higher

stimulated emission cycles
frequency laser source. This latter possibility has two main limitations imposed by
the off-resonance condition of the laser field with the atomic transitions and by the

practical feasibility of the laser source. Also the frequency range of the atomic beam
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is experimentally limited: the output coupling mechanisms which have been devel-
oped up to now can not provide atomic beams with wavevectors larger than twice

9

the wavevector of the laser beams used to drive the Raman transitions;'*® such a

constraint is however easily circumvented by letting the atoms accelerate under the

199

effect of gravity™ or by using higher order Raman processes to couple atom out

from the trap.

5.3 Nonlinear atom optics: optical limiting and optical
bistability

In sec.5.1 and 5.2, we have discussed the atom optical properties of monochromatic
and bichromatic optical lattices at linear regime and we have characterized the nar-
row peaks which arise in the transmission spectra from resonant tunneling pro-
cesses on localized states confined inside the lattice. Such modes are the atomic
analogs of the photonic modes in DBR microcavities which have been discussed at
length in the first part of the thesis and are expected to show a similar behaviour
when driven by the coherent field of an atom laser.

As in the photonic case, the linear regime corresponds to the limit of very weak
atomic flux in which the particles can be considered as independently propagating
in the external potential V*(z) and their interaction energy is so weak that it can be
neglected. For larger atom fluxes, the dependence of the transmission spectra on the
flux may result in effects similar to the ones discussed in chapter 2. Within the mean-
field approximation, which assumes a factorizability condition for the nonlinear in-
teraction term in the wave equation eq.(4.10), the calculations can be performed by
numerically integrating the Gross-Pitaevskii equation eq.(4.21) with the appropriate
boundary conditions; in the most relevant case of repulsive interactions, all the fea-
tures of the transmission spectrum result blue-shifted for growing incident flux by
the mean-field energy. Depending on the sign of the detuning of the incident atom
laser frequency w;,. with respect to the empty cavity Fabry-Perot mode frequency
wiin, the nonlinear feedback on the transmission can be either positive (if wi,. > wiin)
or negative (if w;,. < wi;y,); an opposite result holds if the interactions are instead
attractive. In the former case we can have (atom) optical bistability, while in the latter
case we have (atom) optical limiting.
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FIGURE 5.9: Transmitted flux as function of the incident flux for different detun-
ings of the incident frequency w;,. with respect to the C0O quasi-bound state fre-
quency wiin/wpr = 0.976. Solid line: optical bistability case (win./wpr = 0.986);
dashed line: optical limiter case (wine = wiin). Same lattice parameters as in the
upper panels of fig.5.7.

In fig.5.9, we have reproduced the characteristic dependence of the transmitted flux
®,, on the incident flux ®;,. for two different values of the frequency w;,. close to a
resonance peak: for w;,. < wyy,, in fact, the transmission suffers a negative feedback
for increasing fluxes, giving an optical limiter behaviour, i.e. a transmitted intensity
which grows less than linearly with respect to the incident one (dashed line). For
Wine > Wiin, the feedback is instead positive and bistability can eventually occur
(solid line): this means that for a given value of the incident flux, more than one
transmitted flux values are possible; as usual, the central branch of the hysteresis
loop is dynamically unstable, since it has negative differential transmittivity.

In the plot all the intensities have been normalized to the characteristic flux ®; =
hk}/8mwmla,|, defined as the flux at which the mean-field frequency shift equal to
the Bragg frequency wp, of the lattice. In order to reduce the incident atom flux re-
quired for observing nonlinear features such as atom optical bistability le behaviour,
it can be useful to work with a very narrow transmission peak; indeed, as discussed
in sec.2.1, both the resonance enhancement of the atom density in the cavity mode
and the sharpness of the spectral dependence of the transmittivity are inversely pro-
portional to the mode linewidth 7. On the other hand, if the cavity mode being is
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Atom Li Na 87Rb
Optical Transition | 22Sy/2 — 22P3/5 | 32S1/2 — 3?Ps2 | 52512 — 5%P3)0
A (nm) 671 589 780
Oree = k2 /2m (KHz) 400 160 24
Vpee = Bky/m (cm/s) 8.5 2.95 0.6
a, (nm) 145 275 5.77
O, = hk? /8tmlay)| 2.06 - 1016 4.94-10% 2.67 - 101
(atoms/s cm?)

TABLE 5.1: Summary of experimental®'8? values for atomic parameters. The
Bragg frequency of the optical lattice wp, is generally comparable to the recoil
frequency wree > wpy.

very weakly coupled to the external propagating modes, the in- and out-coupling
processes can present difficulties, since just a slight asymmetry in the in- and out-
coupling amplitudes can result in a strongly depressed transmission.””!® In ad-
dition, the atom laser frequency spread have to be reduced to less than the mode
linewidth; this means that, even if the atom laser output is assumed to be perfectly
coherent, an atom pulse longer than the cavity relaxation time 7 = v~! is necessary:
with the actual non-refilled atom sources this may be a serious problem.

Using the experimental parameters of tab.5.1 for *Na and 3"Rb atoms, the switching
on threshold of the hysteresis loop of fig.5.9 correspond to intensities respectively
equal to 4.5 - 10"%at /cm?s and 2.4 - 10'%at /cm?s; such values are hopefully achievable
by the cw ®"Rb atom laser actually being developed in Paris.?’%?%

Very remarkably, a comparable flux for the case visible light would correspond to
an intensity of the order of a few ;W /cm?, which is several order of magnitude
weaker than any light beam actually used for conventional nonlinear optics; this
enormously larger nonlinearity of matter waves suggests that the observation of
nonlinear effects at the low quanta level could be more easily obtained with atomic
matter waves than with light waves. In other terms, provided the confinement of the
matter wave in the atomic FP cavity is tight enough and cavity linewidth is narrow
enough, a regime in which the mean-field theory underlying eq.(4.21) is no more
valid can be achieved; in this case, the coherence properties of both the cavity and
the transmitted atomic fields are not the classical ones and a complete theory which
takes into account quantum correlations has to be used. The next chap.6 is devoted
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to a detailed study of such effects within a single-mode model for the atomic cavity
which allows for an exact and complete numerical calculation to be performed.

5.4 Atom laser coherence length determination

The calculations that have been reported in the previous sections have assumed
that the incident beam is a perfectly coherent one and can therefore be described as
a monochromatic classical wave. Although optical laser sources are in general well
described by such an approximation, fluctuations in both the intensity and the phase
of the emitted field may play an important role in limiting the attainable accuracy
of measurements; for this reason their characterization results very important for

practical applications.

While the coherence properties of optical lasers have been well understood for al-
ready a couple of decades,” *17 the study of the atom laser output still deserves
attention from both the theoretical and the experimental points of view. Actual
coherent matter sources are in fact limited by the finite number of atoms initially
present in the trapped BEC: since no continuous refilling mechanism has been real-
ized yet, it is not possible to obtain a continuous wave coherent atomic beam, but
only a pulsed one; nonetheless, the stability of the magnetic traps has attained very
good levels so that the extracted atomic pulses can coherently last for a rather long
time provided their intensity is weak enough.

As we have already discussed, mean-field theory predicts that the atomic field in
a trapped BEC is a perfectly coherent one, for which the correlation functions fac-
torize at all orders. First order coherence has been recently explored by a pair of
groups using two different variants of the classical two-slit arrangement.??*?° For
very low-temperature samples, both groups found no decay of the fringe visibility
but for the one which obviously came from a reduced overlap of the two interfering

channels.?!

In optical terms, this means that the coherence length of the conden-
sate is at least equal to its size. At higher temperatures, a substantial reduction of
the first-order coherence length was observed, which has been interpreted as due
to the presence of thermal atoms in the trap.??>?* Recently, several papers have

appeared which discuss such features in both trapped?*-2% 208,237

and propagating
atomic samples and try to give a complete description of their first and second order

coherence properties at zero as well as at finite temperatures.
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However, a conclusive measurement of the coherence length of actual quasi-cw
atom laser beams has not been reported yet, so that the problem of whether their
coherence length can be considerably longer than the size of the parent condensate
is still an experimentally open question. In the present section, we shall show how
the interaction of a weak atom laser beam with an optical lattice can be used for the
experimental determination of the first-order coherence properties of an atom laser

beam.2%®

5.4.1 A simple atom laser model

Keeping in mind the very long (quasi-cw) atomic pulses which have been recently
reported, the atom laser output can be modeled as a weak and stationary plane
‘2

wave of (weak) intensity |a,|”, wavevector k;, frequency w, = hk?/2m and group

velocity v, = hk,/m with a slowly diffusing phase ¢

i(kpz—wpt) eizz)(x—vbt)

ay(x,t) = ae ; (5.13)

provided phase coherence is maintained over a characteristic length [, much longer
than the atom laser wavelength, the parabolic atomic dispersion can be approxi-
mated as a linear one in a neighborhood of wy, so that (5.13) is a good solution of the
atomic Schrodinger equation within a sort of slowly varying envelope approxima-
tion [6, pag.216 and ff.].

Phase diffusion can be modeled by the stochastic differential equation

dé(z) = \/n dB (5.14)

with (dB) = 0, (dB?) = dx; its strength is fixed by the n parameter.

Using standard techniques® for the manipulation of stochastic differential equa-
tions, it can be shown that the first-order correlation function Cél) (z,t;2',t') of such
a beam is equal to

Cél) (x7 t, ZE,, t/) _ <CLZ(I,t>CLb(I/,t,>> _ |a0‘2 ei[kb(z’—x)—wb(t/—t)]e—g|(95—Ubt)—(:c/—vbt’)‘ (515)

and the phase diffusion constant 7 is related to the equal time (¢ = t) coherence
length [. as well as to the equal point (x = 2’) coherence time t. = [./v, by n =
2/lcoh = 2/Ubtc.
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Since our beam is a stationary one CW (z, t+T; 2/, #' +T) = CW(z+ X, t;2' + X, t') =
CW(z,t;2',t'), Wiener-Khintchine theorem!”® can be applied; it follows that the dif-
ferent frequency components are uncorrelated to each other

(a5 (w)ap(w)) = 6(w — ') Sp(w) (5.16)

and the spectral distribution Sj(w) is the Fourier transform of the first-order corre-
lation function Cél) (¢;0) at a given spatial position = = 2

Sy(w) = % / dt 10 (¢ 0) = 21 / dt ¢ (a2 (1) (0)) (5.17)

™

In our specific model, the atom laser has a Lorentzian lineshape

2
Sy(w) = 2| i (5.18)

T (w—wp)?+E

with a linewidth v, = nv,/2 proportional to the phase diffusion constant 7.

In the following two subsections we shall discuss two possible methods for the de-
termination of /. or,equivalently, ,; both of them are based on the coherent reflection
of an atomic beam on an optical lattice.

The first method, discussed in sec.5.4.2, makes use of the peculiar frequency de-
pendence of the reflectivity of an optical lattice in order to determine the spectral
distribution of the incident beam by filtering out the different frequency compo-
nents. This can be done using either the narrow Fabry-Perot resonances described
in the previous section, or even the sharp lower edge of the reflecting window of a
simple lattice: in both cases, in fact, the frequency position of the different spectral
features strongly depends on the lattice intensity €,; by monitoring the density of
the transmitted beam while varying €2, it is in fact possible to get information on
the spectral distribution Sj(w) of the incident beam.

The second method (sec.5.4.3) is instead based on the diffraction of a probe laser
beam on the atomic standing wave which is present in front of a nearly perfectly
reflecting atomic mirror. Since the spatial period of the matter standing wave is
generally as small as an optical wavelength, a direct experimental observation of
the fringes would require a spatial resolution well beyond the possibilities of any
absorptive imaging system; this difficulty can be overcome by diffracting light on
the phase grating provided by the oscillatory refractive index profile of the atomic
standing wave. The coherence length of the atom laser can be inferred from the
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angular lineshape of the first-order diffracted peak: the longer the coherence time
of the incident beam, the larger the number of coherent density oscillations and thus
the narrower the peak.

5.4.2 Velocity filtering

Owing to the assumption of a weak atom laser beam and therefore negligible atom-
atom interactions, the system is well described by an exactly solvable single-particle
theory. In our specific case of an atom laser beam with known statistical properties
which incides onto an optical lattice, eq.(4.20) is best studied in frequency space,
where the different components are decoupled from each other. In other terms, the
amplitude of the transmitted beam a;, at a given frequency w is uncorrelated from
all the others and is given by

aur () = T(w)ap(w) (5.19)

where 7(w) is the transmission amplitude of the mirror which summarizes all the

information on its detailed structure.

Since the total densities in the incident and transmitted beams are related to the
corresponding spectral densities by

%wm/&ﬂwdw (5.20)

the effective transmittivity T.¢ = py./pp can be evaluated using eq.(5.19).

In the case of a red-detuned optical lattice, the upper edge of the reflecting window
is fixed at wp,, while the position of the lower edge is a linear function of the lattice
intensity €Q,. If wj, is located below the Bragg frequency wp,, the atomic beam is well
transmitted for small values of €2, while it is mainly reflected for large values of €2,.

The width of the crossover region provides information on the atom laser linewidth
7: the broader such a linewidth, the smoother the step. In fig.5.10a we have plot-
ted the effective transmittivity 7.¢ as a function of the lattice intensity (2,, while
in fig.5.10b we have plotted the maximum of the slope d7.4/dS,, i.e. its value at
Q, such as wﬁmm)(Qo) = wy, as a function of ~,. Using this latter dependence, the
linewidth +, of a given source can be easily inferred from the experimentally mea-

sured T.g as a function of €2,.
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FIGURE 5.10: Left panel: transmitted fraction as a function of the lattice intensity
Q, for different values of the atom laser Lorentzian linewidth ;. Solid, dashed
and dot-dashed lines respectively correspond to v, = 0.02,0.01,0.001wp,. Right

panel: dependence of the maximum of the slope dTeg/dS2, on the atomic source

linewidth ;. The central frequency w, = 0.925wg, is such that W™ — o, for

Q/wpr = 0.1; lattice length w = 120/k.

The results of analogous calculations performed for a Gaussian atom laser line-
shape®® are plotted in fig.5.11: from the qualitative point of view, the behaviour
looks very similar. As the only difference, reflection in the strong €, limit is now
complete, since the weight of the high frequency tail which overlaps with the w >
wp, transmitting part of spectrum is negligible for a Gaussian lineshape.

In the language of X-ray diffraction,*

the opening of a finite frequency window
with nearly total reflection can be interpreted as a signature of a dynamical diffrac-
tion process rather than a simple kinematical diffraction one. The crossover from a
transmitting to a reflecting regime situation can be reformulated in spatial terms
as the crossover from a [, < [. to a [, > [. regime, [ being the extinction length
of the optical lattice* and [. the coherence length of the source. If I, > I, the re-
flected waves at all planes of the optical lattice involved in the reflection process
are mutually coherent giving constructive interference and consequently a nearly
perfect reflection. In the opposite [, < [. case, the limited coherence length of the
source washes out the constructive interference so that the reflection is only partial.
The same effect occurs in X-ray diffraction: dynamical diffraction effects are in fact

washed out when the size of the scattering monocrystals is smaller than the extinc-
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FIGURE 5.11: Left panel: transmitted fraction as a function of the lattice intensity
Q, for different values of the atom laser Gaussian linewidth +,. Solid, dashed
and dot-dashed lines respectively correspond to v, = 0.02,0.01,0.001wp,. Right

panel: dependence of the maximum of the slope dTcg/dS2, on the atomic source

linewidth ;. The central frequency w, = 0.925wg, is such that W™ — o, for

Qo /wpr = 0.1; lattice length w = 120/k.

tion length.?** In the X-ray case, the incident beam can generally be considered as
perfectly coherent while the diffracting lattice has a finite coherence length; in the
atomic case, the incident beam does have a finite coherence length while the optical
lattice is perfect.

If the linewidth of the source is sufficiently smaller than the frequency separation of
adjacent FP modes, the corresponding resonance peaks can also be used for a spec-
tral analysis of the incident beam. As we can see in fig.5.12, the spectral position
wrp of the Fabry-Perot modes in an optical lattice can be tuned by varying the in-
tensity (2, of the lattice and therefore swept across the atom laser lineshape. In the
most relevant case in which the FP mode linewidth is much smaller than the atom
laser linewidth ,, the former can be approximated by a delta-function; hence, for
each value of (),, the effective transmittivity 7.4 results proportional to the value of
the spectral distribution function S, evaluated at the FP mode frequency wgp(€2,).
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FIGURE 5.12: Simple optical lattice: spectral position of the conduction band FP
modes as a function of lattice intensity; krw = 120

5.4.3 Atomic standing wave

Consider a weak atomic beam with the statistical properties described in 5.4.1 nor-
mally incident on a nearly perfectly reflecting atomic mirror with a frequency band-
width much larger than the linewidth +, of the atomic source.

If the beam propagates along the negative = direction and the mirror is located at
x = 0 (see fig.5.13), the atomic field amplitude in front of the mirror can be written
as the sum of the incident and the reflected beam amplitudes

a(z,t) = ay(—x — vpt) + ap(x — vyt + 2pen )" (5.21)

the penetration depth [,., in the mirror is related to the reflection retardation time
tret BY 2lpen, = ptyey; for an actual mirror, ¢,., can be evaluated®® as the frequency
derivative d¢, (w)/dw of the reflection phase ¢, [241, Chap.];].

Interference effects between the incident and the reflected matter waves creates in
front of the mirror a standing wave profile in the atomic density

p(z,t) = 2]a,|” {1+Re [eQik”ew(“)} } (5.22)

whose contrast is fixed and unity at all positions, but whose phase 0(z,t) = ¢(z —
Vgt + 2lpen) + ¢ — d(—2 — v,t) slowly fluctuates in both space and time ©.

(©We are indebted to Markus Greiner for illuminating discussions on this point
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FIGURE 5.13: Lower panel: scheme of the proposed arrangement. Upper panel:
qualitative plot of the optical potential experienced by the atoms.

If we introduce the evolution equation eq.(5.14) for ¢(z) in the definition of § and

239

we solve the resulting stochastic equation,™” we are led to a simple expression for

the correlation function of the phase 6(x, t) of the standing wave at a given time ¢
<ei9(z’t)e_w(x/’t)> = eMle=al, (5.23)

which means that the characteristic length over which the phase of the standing
wave decoheres is equal to half the atom laser coherence length [./2. As we can
see in fig.5.14, sufficiently close to the mirror (i.e. for z < (I, — l,)), the phase
f(x,t) is locked to the reflection phase of the mirror; farther away it is instead freely
fluctuating and the oscillations in the density profile are washed out in the average:
at each location z for which z > (. — l,.,), the standing wave position fluctuates in
fact within a characteristic time scale set by [./v.

Since the spatial period of such density fringes is fixed by the wavelength of the mat-
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FIGURE 5.14: Mean value of the atomic density profile for an incident atomic
beam Lorentzian linewidth v, /wp, = 6 x 10~* (upper) and 7, /wp, = 3 x 1074
(middle). The broader the linewidth, the faster the phase decoherence of the
standing wave leading to the effective decay of the oscillations in the mean
atomic density. Spatial profile of the local band edges (lower panel). The cen-
tral frequency w,/wp, = 0.9 of the Lorentzian source lineshape (horizontal
dashed line) lies well inside the reflecting window of the DBR atomic mirror
with Q, /wp, = 0.2.

ter wave, typically as small as an optical wavelength, the experimental observation
of the fringes would require a spatial resolution well beyond the possibilities of any
direct imaging system. This difficulty can be overcome looking at the diffraction of
the light of a probe laser beam on the phase grating provided by the atomic density
p(z) profile: the spatially modulated refraction index is determined by the refrac-
tive properties of the atoms and is proportional to the atomic density p(z).2*# If the
probe beam is taken to be far off resonance from any atomic transition, the optical
density of the matter wave turns out to be very small and the diffraction process
can be treated in the first Born approximation, which takes into account only single
scattering processes.

Denoting with E,(z) the transverse profile of the incident probe beam (k, is its
central wavevector), assumed not to spatially overlap with the atomic mirror, the
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emerging beam profile can be written (at lowest order in [3p) as
Ee(w.1) = [1 + iBp(x, )] E,(x) (5.24)

where (3 is a numerical coefficient proportional to the atomic polarizability times the
atom laser beam waist. The scattered amplitude F; at an angle « is therefore given

by
d ) -
Eu(at) = / O Bl e = [14 208 a,) Bylh)+

2&2‘@0| {/62ik’bzei9(:c7t)e—iktIEp(x) dr + /e—2ik’b:c€—i9(:c7t)e—ikt:cEp(x) dl’} (525)
v

where the transferred wavevector k; is defined as k; = k,sina and Ep(k;) is the
Fourier transform of the transverse profile £,(z) of the probe beam.

If we assume the waist o, of the incident probe beam to be much larger than the
coherence length /. of the atom laser and we consider only the scattering at an angle
close to the Bragg condition k; = 2k, eq.(5.25) can be rewritten in the simpler form

dr . )
Ey(a,t) ~ Bla,| /% e!Chvh)z i@ B (1), (5.26)

Experimentally, a detector placed at an angle o would give a signal proportional to
the mean intensity of the scattered light

@) = <\E ) =

— |8, [ / di" dk" D(k — K" — 2k, k' — K" — 2k E,(K")E (k”’)] (5.27)

k=k'=k¢

with D(k, k') defined as the Fourier transform of the standing wave phase correla-

tion function

dx dx 1o . (! 77/7T
k ]{3 (k x'—kx) i0(x,t) ,—i0(z',t) \ _ Sk — k. 5.28
//27r o C <€ © > k2 4+ n? ( ) (5:28)

In our o, > [, case, the broadening due to the finite coherence of the standing wave
profile described by D(k, k') is much larger than the broadening due to the finite
laser waist 0, so that the scattering lineshape can be rewritten as

Ui

I
(0) o ((kpsina — 2k,)? + n?

(5.29)
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This means that the coherence length of the atom laser is easily inferred from the
angular linewidth of the scattered peak.

In physical terms, this result can be explained just by thinking of the standing wave
in front of the atomic mirror as a succession of different and uncorrelated pieces of
length [./2, each of them scattering light in the k; ~ 2k, with a different and random
phase; from the indetermination principle, a finite length [./2 corresponds to an
uncertainty in the momentum roughly equal to Ak; = 1 = 2/l.. From a condensed-
matter point of view, such an effect can be related to the broadening of the diffraction
peaks from crystals which occurs in the presence of disorder; our specific model
for the phase diffusion corresponds to the case of an uneven separation of lattice
planes [243, chap.7.4].
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FIGURE 5.15: Angular diffraction pattern for different values of the atom laser
linewidth: 7, /wp, = 3 x 10~% (solid), v, /wp, = 6 x 10~* (dashed) and v, /wp, =
1.2 x 1073 (dot-dashed). Inset: enlargement of the Bragg peak at k; ~ 2 x 0.9k,
which corresponds to the standing wave pattern in front of the DBR atomic
mirror.

If the probe beam has a non-negligible overlap with the optical potential of the mir-
ror, the atomic density profile experienced by the probe is not simply the sinusoidal
one given by eq.(5.22) but presents additional features due to the complicate shape
of the atomic wavefunction inside the DBR mirror. The corresponding lineshape for
the scattered light is plotted in fig.5.15: in addition to the Lorentzian peak at k; ~ 2k,
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corresponding to the diffraction on the standing wave pattern in front of the DBR
atomic mirror, there is a broad plateau extending up to k; ~ 2k, due to the sharp
decay of the atomic density as well as to its additional periodicity inside the mirror
(see fig.5.14 and in particular the inset of the second panel).
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Conclusions and perspectives

This second part of the thesis has been devoted to the study of atom optical effects
from the point of view of photon optics: the strict parallelism between the behaviour
of matter waves in external potentials and the behavior of light waves in dielectric
structures has been emphasized and exploited in order to get a deeper insight on
both systems via cross-fertilization effects.

In the first chap.4, we have given a general overview on interacting atomic matter
waves in external potentials: the effect of the atom-atom interaction potential turns
out to be analogous to an intensity-dependent refractive index for light waves, the
external potential behaves as a linear dielectric constant for matter waves and the
atomic spin is equivalent to the polarization of electromagnetic waves. Thanks to
this strict analogy, the same theoretical approaches can be used for the description
of both systems: after a general review on the main features of some of the most
relevant approaches, a specific attention is paid to the mean-field theory, which is
actually one of the most important tools for the study of the dynamics of the co-
herent matter waves of Bose-condensed samples. Very remarkably, the photonic
version of mean-field theory is nothing else than the classical electrodynamics in
nonlinear dielectric media which has been extensively used in the first part of the
thesis; as it is well-known, such a theory well describes the dynamics of coherent

laser light in conventional material.

In chap.5, we exploit the analogy between the behavior of matter waves in optical
potentials and the behavior of light waves in dielectric structures in order to study
the atomic reflection from optical lattices: as in the case of the electrons moving in a
crystal or in the case of light propagating along a DBR mirror, the atomic dispersion
in the periodic optical potential is characterized by allowed bands and forbidden
gaps and the effective mass at band edge can be much lighter than the free-space
mass. This suggests that a slow modulation of the optical lattice parameters could
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act as a confining potential on atomic waves and eventually give rise to quasi-bound
states similar to the localized modes of a DBR microcavity.'? !> The very light
atomic mass leads to an enhanced spacing of such cavity modes with respect to
free-space and the confinement can be provided within a characteristic length scale
of the order of a few optical wavelengths: this two facts cooperate in giving Fabry-
Perot modes with spacings as large as one tenth of the atomic recoil energy. In
addition, such modes can be easily driven by an external atom laser beam inciding
on the lattice and give rise to very narrow features in the transmission spectra which
can be exploited either as velocity filters or as resonant modes for the observation
of nonlinear atom optical effects.

Two possible applications®® of atomic reflection on optical lattices to the measure-
ment of the atom laser coherence properties have been discussed in sec.5.4: a first
method exploits the frequency dependence of the optical lattice transmittivity in or-
der to filter the different atomic velocities in the beam and therefore determine its
spectral distribution. The second method is instead based on the diffraction of light
on the phase grating created by the atomic standing wave profile which is present

in front of a good atomic mirror.

Given the narrow linewidth and the tight confinement of the mode wavefunction
which can be obtained for matter waves using atomic Fabry-Perot interferometers
based on modulated optical lattices, nonlinear atom optical effects are expected to
occur at rather low intensities; with respect to the photonic counterpart, atom-atom
interactions are generally much stronger and, for the specific arrangement of sec.5.3,
the atomic flux value required for the switching on of the atomic bistable element
has been estimated to be of the order of 10'3at/cm?s; a similar value for the case of
visible light would correspond to an intensity of the order of a few W /cm?.

As new kinds of optical cavities are being actively studied so as to observe nonlinear
optical effects at a low light level and therefore have the possibility to taylor the
coherence properties of the transmitted beam down to the single photon level, the
very low threshold atomic fluxes which are required for the observation of nonlinear
atom optical effects look very promising from the point of view of controlling the
quantum correlations of a beam down to the single atom level. Very remarkably, the
modulated optical lattice arrangement proposed in chap.5 should be able to give
interaction energies large enough for the nonlinearity parameter N, = 7/w,, to be
appreciably smaller than 1.
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The third part of the thesis is devoted to the study of effects which go beyond the
mean-field description of the (atomic or photonic) Bose field. In chap.6, a single-
mode system will be discussed, whose formal simplicity allows for a numerical
study in terms of quantum master equation; in particular, we shall check the accu-
racy of the mean-field results in the weak nonlinearity limit. In the opposite strong
nonlinearity case, the discrete nature of the field turns out to be instead important
and peculiar nonclassical correlations appear in the transmitted beam.

While for the simplified single-mode problem a numerical solution of the quantum
master equation is a tractable problem, it quickly becomes unfeasible if the problem
involves even just a few modes of the field. In particular, such an approach can
not be used for planar systems such as DBR microcavities, in which confinement
is present only in one dimension and the particles are free to move along the two
other dimensions. Similar difficulties are encountered also in the study of current
Bose condensed atomic clouds, for which the trapping frequencies are definitely not
strong enough for a single-mode approximation to be valid and interactions may
give rise to a small but finite non-condensed fraction even at zero temperature.

The absence of simple and efficient analytical or numerical schemes allowing for
calculations to be performed in the general case of multimode systems with strong
interactions has encouraged the quest for different formulations of the quantum
Bose field problem. In chap.7 we shall discuss the principles of a novel approach
based on the stochastic evolution of a macroscopic wavefunction; after proving on a
mathematical basis its validity and stability properties in the most general case, we
shall present first examples of its application to simple physical systems.
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After having given in the previous two parts a detailed account of the mean-field dy-
namics of matter and light fields in respectively optical lattices and semiconductor
DBR microcavities, this third part will cope with effects which can not be described
in the framework of a mean-field theory since they involve the detailed quantum
statistical properties of the Bose field under examination.

Although quantum optics of the light field has been an active field of research al-
ready for several decades, the weakness of the optical nonlinearity of current mate-
rials has in most cases forbidden the observation of quantum effects which are much
more than a correction to the classical mean-field result. For this reason, much of the
calculations have been performed with approximate theories which keep track of
quantum fluctuations around the mean-field in a linearized way; only very recently,
an active interest has been focussed on the possibility of achieving a regime in which
photons interact strongly with each other: optical materials with very strong non-
linearities as well as very high Q-valued cavities have been investigated so as to
realize systems in which the optical nonlinearity is triggered by a very small num-
ber of photons. In this case, the quantum state of the field can be manipulated down
to the single quantum level so as to generate nonclassical and even entangled states
of the field.

On the other hand, recent theoretical work on atomic Fabry-Perot interferometers
has shown that the use of spatially modulated optical lattices allows for well sepa-
rated cavity modes with narrow linewidths and tight longitudinal confinement and,
in particular, atom-atom interactions have been predicted to give rise to atom optical
bistability with a very low threshold value of the order of 10'*at/cm?s for the inci-
dent atomic flux. Provided transverse motion is appropriately frozen by means of a
single-mode atomic waveguide, the isolated cavity resonance can show a nonlinear

coupling w,; comparable or even larger than the mode linewidth v so as give a criti-
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cal number N, smaller than one. Since in this regime a very small number of atoms
is required in the cavity mode to substantially affect its transmission properties, the
mean-field approach can not be accurate and the peculiar coherence properties of
the cavity field have to be described by a complete quantum theory.

This third part of the thesis is devoted to the discussion of effects which go beyond
the mean-field description of the atomic or photonic Bose field. In the first chap.6
we consider a single-mode system which, thanks to its simplicity, allows for an exact
numerical solution of the quantum master equation directly in the Fock state basis.
Our calculations confirm the expectation that mean-field theory gives results which
are correct in the weak nonlinearity (N, > 1) case, i.e. when a large number of
field quanta in the cavity mode are necessary for appreciable nonlinear effects; in
this case, quantum fluctuations can be accurately described in a linearized way by
the stochastic differential equations of Positive-P representation in their linearized
version. The discrete nature of the field results instead important in the opposite
strong nonlinearity (/V, < 1) case, in which peculiar nonclassical correlations appear
in the transmitted beam in both the optical limiting and the optical bistability cases.

While the evolution in terms of quantum master equation in a Fock state basis is
a numerically tractable problem in the case of the single-mode cavity, it quickly
becomes unfeasible if the problem involves even just a few modes of the field; in
particular, it can not be applied to planar geometries such as DBR microcavities in
which confinement is present in just one dimension and the particles are free to
move along the two other dimensions. Although at mean-field level the symme-
try of the system guarantees conservation of the momentum along the plane for
all particles, collisional effects beyond the mean-field are expected to produce corre-
lated pairs of quanta with non-vanishing relative momentum; this means that all the
modes of the field have to be simultaneously considered in the calculations, which
results into a Hilbert space of an enormous dimensionality. A similar problem is
encountered in the study of current trapped Bose condensates, in which the rather
weak confinement frequency of the magnetic or optical trap prevents the single-
mode approximation from being valid. In addition to the thermal cloud of un-
condensed atoms unavoidably present at finite temperature, interactions can them-
selves give a small quantum depletion of the condensate even at zero temperature.

Several techniques have recently been developed for the determination of the dy-
namical and coherence properties of such a multimode quantum field. Besides
the quantum kinetic theories of Gardiner and Zoller and the classical many-body
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techniques, the complexity of which falls beyond the scope of the present thesis, a
straightforward generalization of the Positive-P representation to multi-mode sys-
tems has been applied to strongly interacting systems; although some interesting
results have been obtained with such a technique, the usual divergence problems
have forbidden it from being applied in full generality.

For this reason, an intense quest for new formulations of the bosonic many-body
problem have been pursuited by several groups: in chap.7, we shall present a novel
approach based on the stochastic evolution of a macroscopic wavefunction. The
general idea of the method consists in generalizing the Gross-Pitaevskii equation
introducing a new stochastic term in the evolution of the macroscopic wavefunc-
tion so as to recover the exact dynamics after the average over the stochastic noise.
Under appropriate conditions on the specific form of the stochastic terms, we shall
prove that the time evolution described by the stochastic dynamics is equivalent
to the complete many-body problem and therefore able to recover all the quantum
correlations which appear in the quantum gas following atom-atom interactions.
Thanks to the fact that the conditions for recovering the exact dynamics do not
completely determine the form of the stochastic equation, different schemes with
profoundly different statistical and stability properties can be chosen. One of such
schemes is a reformulation of the Positive-P representation: since the solution of
the stochastic equations are subject to divergences within a finite time, this scheme
has a limited practical utility. Our approach being very general, it has been possi-
ble to find schemes which have regular solutions for all times; in this case, the only
limitation turns out to be the computational time required for an accurate Monte
Carlo sampling of the observables. The chapter is concluded with the presentation
of two examples of application of the method to simple physical systems such as a
two-mode model of a Josephson junction and a one dimensional Bose gas. For the
two-mode system, a direct numerical integration of the Schrodinger equation in the
Fock basis can also be performed: the successful comparison with Monte Carlo cal-
culation has provided further confirmation to our stochastic wavefunction method.
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Chapter 6

Quantum theory of the single-mode
nonlinear (atomic) Fabry-Perot cavity

In the present chapter, we investigate the coherence properties of the atomic beam
which is transmitted through a single-mode atomic cavity when the cavity is driven
by a monochromatic and coherent atom laser beam: the field dynamics is numeri-
cally studied by solving the full quantum master equation for the cavity mode and
the results are physically interpreted in comparison with the available approximate
theories. Given the strict analogies between the behaviour of light waves in DBR
microcavities and matter waves in optical lattices, these predictions are definitely
not limited to atomic systems, but can be freely transferred to photonic systems as
well.

As expected, mean-field theory is found to be accurate in the weak nonlinearity
limit in which an appreciable nonlinear modulation of the transmission requires the
presence of a large number of atoms in the cavity mode. Within MFT, the atomic
Bose field is considered as a classical C-number field and its fluctuations around
the classical steady-state are treated in a linearized way by means of the stochastic
differential equations of Positive-P representation in their linearized form.

In the opposite strong nonlinearity case, when the transmission state is substan-
tially modified by the presence of a single atom in the cavity mode, the discrete
nature of the matter field results important: MFT, which is based on a classical field
assumption, breaks down and a full quantum calculation results necessary in order
to accurately describe the peculiar nonclassical properties of the transmitted beam.
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For the specific case of an incident field at resonance with the empty cavity mode,
the numerical solution of the full master equation predicts a sort of atom blockade
effect, which closely reminds the well-known Coulomb blockade effect of electronic
transport through microscopic structures: if the electrostatic potential change fol-
lowing the injection of a single carrier is able to substantially affect the injection of
the successive carriers, the current shot-noise results strongly suppressed. Analo-
gously, atom-atom interactions in our FP cavity can be so strong that the presence of
a single atom shifts the mode frequency off-resonance from the incident atom laser
beam and the following atoms are effectively forbidden from resonantly entering
the cavity before the first atom has left. For moderate incident intensities, the cav-
ity therefore behaves as a two-level system and the transmitted atomic beam has
the usual nonclassical properties of resonance fluorescence light, such as a strong
antibunching.

Only at very large incident intensities -much larger than the saturation intensity of
the effective two-level system— more than one atom can be forced to be in the cav-
ity mode at the same time and a peculiar dependence on the incident intensity is
found for both the coherent and the incoherent transmission. In this regime, some
of the most peculiar features resulting from the numerical calculation are well ex-
plained by a dressed cavity model, in particular the frequencies of the incoherent
transmission peaks.

For the case of a blue detuned incident atom laser beam and repulsive atom-atom
interactions, the feedback of the nonlinearity on the transmission is instead positive
and optical bistability is predicted by mean-field theory. Given the discrete nature
of the field, quantum fluctuations may however allow for tunneling events from
one branch of the bistability curve to the other so that the mean-field steady states
are not true steady states for an indefinite time any more; as expected, the larger
the critical number N,, the smaller the tunneling rate. From the point of view of
the density matrix, there is just one steady state of the system which consists of a
(generally statistical) mixture of the two mean-field steady states, the “transmitting”
and the “non-transmitting” ones; the slow tunneling rate from one of them to the
other reflects into the appearance of a slow time scale 7, in the correlation functions,

much slower than the characteristic damping time of the cavity v~ '.

If the detuning is such that the energy of the cavity filled of N atoms is exactly
on resonance with the injection process of N atoms, a sort of N-atom transmission

process occurs, which is the atom optical analog of N-photon absorption; in the
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weak incident intensity limit, atoms are therefore most likely transmitted in bunches
containing a number of atoms of the order of N and separated by intervals in which
no atom is present; this reflects into peculiar coherence properties of the transmitted
beam.

In sec.6.1, we shall introduce the Hamiltonian of the model and we shall describe
the physical processes involved, as well as the physical parameters which control
them.

In sec.6.2 we shall address the weak nonlinearity case, in which the full numerical
calculation is well reproduced by the mean-field theory with a linearized treatment
of fluctuations.

In the two following sections, we shall discuss the numerical results obtained for
the opposite case of a strong nonlinearity: the former (sec.6.3) deals with the case of
a resonant incident atom laser, for which MFT would predict optical limiting. The
latter (sec.6.4) deals instead with an incident beam blue detuned with respect to the
empty cavity so as to give a positive feedback on the transmission; for this case,
MFT would predict optical bistability.

6.1 The model

Consider a quasi-cw beam of atoms coherently extracted from a trapped Bose Ein-
stein condensate (BEC) by means of a radio-frequency field or of a pair of optical
beams in a Raman configuration. As we have discussed in detail in chap.4, given
the coherent nature of the outcoupling mechanism used to transfer atoms from the
trapped BEC to the propagating beam, the all-order coherence of the BEC is ex-
pected to transfer into a similar property for the atom laser beam. If the intensity of
the outcoupled beam is weak enough not to deplete substantially the trapped BEC
or this is continuously replenished, the atom laser can be modeled as a monochro-
matic classical C-number wave; phase fluctuations (sec.5.4) are neglected assuming
their characteristic time scale to be much longer than all other characteristic times
of the problem.

As shown in fig.6.1, suppose to inject such an outcoupled wave into a single mode

215-225

atomic waveguide in order to freeze the transverse atomic motion; in this

way, the system behaves as a one-dimensional one. At the same time, the use of
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a horizontal waveguide allows to counteract the effect of gravity, so that the lon-
gitudinal wavefunction of the outcoupled beam is simply a plane wave ¢(z,t) =

Pinee FLr—wLt) of frequency w;, and momentum £;..

Suppose now to send such a cw coherent atomic beam onto an atomic Fabry-Perot
(FP) cavity, formed by a pair of parallel atomic mirrors which confine atomic mat-
ter waves in the space between them; atomic motion between the mirrors is quan-
tized in discrete cavity modes, which are coupled to externally propagating modes
because of the non-perfect reflectivity of the cavity mirrors. The most interesting
schemes which realize such a device have been analyzed in detail in the chap.5:
they are in general based on the optical potential applied to the atoms by far off-

209211 yse a blue detuned laser field to create

124,125,212,213

resonance laser fields: some of them
potential hills between which the atoms are confined; some others use
optical lattices in order to create the atomic analog of DBR microcavities and give
features which are generally more favorable from the nonlinear atom optics point

of view.

If the frequency wy, of the incident atom laser beam is far from resonance with all the
cavity modes, the atomic beam is effectively forbidden from entering the cavity and
therefore is nearly completely reflected back. On the other hand, if wy, is close to the
frequency w, of one of the cavity modes, this latter is resonantly excited: a substan-
tial fraction of the incident atoms resonantly enter the cavity and are transmitted on
the other side where they form the transmitted beam.

Outcoupling .
field Cavity mode
Incident Trasmitted
At.Beam At.beam
ANNNANNANAS
éTm ’\/\/W
/ Reflected
At.Beam

At.waveguide

At.mirrors

FIGURE 6.1: Sketch of the experimental scheme under examination
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If we assume that the frequency spacing of the different cavity modes is much larger
than both the laser linewidth and the atom-atom interaction energy, and if we sup-
pose the atom laser frequency wy, to be close to a cavity resonance, only this mode
is effectively excited, while the other ones are safely neglected. If we develop the
atomic field inside the cavity on its eigenstates

@2(27) = Z Pa(T)Ca;s (6.1)

this single-mode approximation is equivalent to assuming all the ¢, to be effectively
negligible but for one of them, which will be called in the following a; let ¢(x) be
the wavefunction of such mode.

Under this approximation, the driven atomic cavity can be described by the same
model Hamiltonian used for the single-mode nonlinear Fabry-Perot interferometer
in sec.2.2

H = hw,d'a + hwya'aaa + ihkiebmeae ™ + h.c. (6.2)

where a and a' are respectively the destruction and creation operators for the local-
ized cavity mode; thanks to the Bose nature of the atomic species under examina-
tion, such operators satisfy the usual Bose commutation relation [a,a'] = 1.

The first term of the Hamiltonian eq.(6.2) describes linear oscillations at frequency
w,; the second term keeps track of the (collisional) atom-atom interactions, whose
strength is quantified by the w,; parameter. This is easily related to the cavity mode

wavefunction ¢(x) and the s-wave scattering length a,:'*

ont =220 [ ool ©3)

as expected, its sign is positive (negative) for repulsive (attractive) interactions.
Since the atomic density inside the cavity is, at resonance, much larger than the
density in the incident atom laser beam, atom-atom interactions outside the cavity
are safely neglected; in addition, the single-mode approach neglects all those pro-
cesses in which atoms are transferred from the mode a to the other modes of the
cavity by the interactions; such an approximation is generally justified provided the
interaction energy is much smaller than the spacing of adjacent cavity modes and
parametric resonances of the kind 2w, = w, + w,~ are absent.

The driving of the cavity mode by the incident atom laser beam is taken into account
by the last two terms; thanks to the all-order coherence assumption, the driving
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field is well modeled as a monochromatic and classical C-number field );,.e~ =t
which forces the cavity mode to oscillate; in particular, the coupling coefficient k;,,. is
proportional to the transmission amplitude of the front cavity mirror. Analogously,
the amplitude of the transmitted field through the cavity 4y, is proportional to the
internal amplitude a times a 7, coefficient proportional to transmission amplitude
of the back mirror; all the statistical properties of the transmitted field can therefore

be expressed in terms of the internal field ones."*

From the point of view of the sole cavity, the coupling to the continuum of propa-
gating external modes through the non-perfectly reflecting mirrors, which underlies
the driving of the cavity mode by the incident beam as well as the formation of the
transmitted beam, is a dissipative process and thus can not be included in a simple
Hamiltonian formalism.

From the general theory of quantum damping, it follows that the dynamics of the
single-mode cavity under examination is completely described by the following
master equation for the density matrix p

op i

—=—p D [a] p; 6.4

5 = 7 0 T+ Dlalp; (6.4)
the first (Hamiltonian) term keeps track of the driving, the linear oscillations and the
atom-atom interactions, while the second term keeps track of the dissipative effects.
This latter has been written in terms of the superoperator D [a] p, defined as usually
as

UV B
Da] p = apa —§(a ap+ pa‘a) ; (6.5)

the coefficient v has the usual meaning of damping rate of the cavity excitation.

In our actual calculations, the steady-state of the density matrix p, is determined by
letting p evolve according to eq.(6.4) for a time much longer than the characteristic
relaxation time of the system under examination. The expectation values <O> of

the observables O of interest are calculated as mean values over the steady-state
density matrix Tr [ﬁerA} ; for the determination of a two-time correlation function

<Og(t)él(0)>, we have first to apply the observable O, to the left of Peq, then to

let the resulting density matrix O, ., evolve for a time ¢ according to the master
equation eq.(6.4) and finally to take the expectation value of second observable O,.

From a numerical point of view, several different representations can be chosen for

~.49,157,244
4

p our actual simulations have been performed using a Fock representation
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in which the density matrix is expanded in the number-state basis M, ,,, = (n|p|n’).
The time evolution is numerically performed using a standard fourth order Runge-
Kutta method and then checking the numerical stability of the result with respect to
a reduction in the integration time step.

In the case of symmetric systems, in which the front and back mirrors have the same
transmission properties, the k;,. and 7, coefficients are related to the damping v by
the relations k;,. = (yv/2)"/? and 1, = (/2v)"/?, which follow from the well-known
property that the transmission through any linear, symmetric and non-absorbing
cavity is, at exact resonance, exactly one [50, chap.9]; v = (2hw,/ m)'/? denotes the
(group) velocity of free atoms which incide on the cavity at resonance.

Depending on the specific scheme adopted for the cavity, processes of different
kinds can be responsible of additional incoherent non-radiative losses which are
the atomic analog of light absorption in materials; as we have seen in sec.4.1, if the
confinement is a magnetic one, Majorana spin flips may occur, while spontaneous
emission of light may take place in presence of an optical confinement. Such ef-
fects have to be handled by means of additional terms in eq.(6.4) of the same form
YabsD [@] p: their main consequences are a broadening of the resonance and a reduc-
tion of the peak transmittivity by a factor (7 + ans)/7-

When the single-mode nonlinear cavity model is applied to the optical case, the
tield operator a describes the amplitude of the electromagnetic field in the cavity
mode and the nonlinear interaction between photons results from eq.(2.11) propor-
tional to the third-order nonlinear polarizability x® of the cavity material. The main
difference consists in the strength of the nonlinear coupling, which can be quanti-
fied by the critical number N, = /w,, of quanta which are necessary for having an
appreciable nonlinear effect on the transmittivity. Since the optical nonlinearity of
usual materials is very weak, conventional optical resonators are characterized by
N, > 1, which means that a huge number of photons have to be excited inside the
cavity before the effect of optical nonlinearity to be apparent. For the description
of such systems, the mean-field approximation performed in sec.2.2 is expected to
give accurate results; in the next sec.6.2 we shall confirm this statement by directly
comparing the mean-field predictions with the results of the exact numerical calcu-
lation.

Very recently, an active interest has been focussed on the possibility of achieving the
N, < 1regime with light: optical materials with very strong nonlinearities as well as
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very high Q-valued cavities have been investigated in order to generate nonclassical
states of the field and even entangled ones.

First of all, high finesse optical cavities containing a small number of atoms have
been investigated in the realm of cavity quantum electrodynamics:** in this case,
the nonlinearity mechanism is the intrinsic one of two-level atoms: with a smaller
number of atoms, a smaller number of photons is required for the saturation of the
transition, but at the same time the weaker polarizability imposes a stronger re-
quirement on cavity finesse. Furthermore, an additional loss channel is introduced
by the spontaneous decay of excited atoms.

Secondly, quantum coherence effects in multilevel atoms dressed by strong pump

tields have been theoretically shown to give enhanced nonlinear susceptibilities

as well as depressed absorptions:****? apart from some difficulties related to the

251-255

specific level scheme chosen, such arrangements are now beginning to be ex-

ploited for low intensity nonlinear optics experiments®® 2”7

58

as well as for the study
of very slow pulse propagation.?

Finally, new cavity geometries with enhanced Q-factors are also being investigated:
in particular, the whispering gallery modes of cylindrical or spherical resonators
look very promising, since fused silica spheres and disks with spatial sizes of the
order of micrometer and very weak surface roughness are currently available; un-
fortunately, the nonlinear susceptibility of fused silica is very weak and the insertion

of active impurities may result necessary for the study of nonlinear processes.?® >

On the other hand, recent theoretical work on atomic Fabry-Perot interferometers!?* 1%

has shown that the use of spatially modulated optical lattices allows for well sepa-
rated cavity modes with narrow linewidths and tight longitudinal confinement: in
particular, it has been shown that atom-atom interactions can give rise to atom op-
tical bistability with a very low threshold intensity of the order of 10*3at/cm?s. Pro-
vided transverse motion is appropriately frozen by means of a single-mode atomic

waveguide,?°2%

such systems behave as effectively one dimensional ones; thanks
to the transverse confinement, the isolated cavity resonance can show a nonlinear
coupling w,; comparable or even larger than the mode linewidth vy and therefore
a critical number N, < 1. In this regime, MFT breaks down and a full quantum
calculation based on the master equation eq.(6.4) is required; the peculiar coherence

properties which result from the calculations will be discussed in sec.6.3.
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6.2 Weak nonlinearity case: mean field theory and lin-

earized fluctuations

In the mean-field theory, the atomic field is described by a classical C-number field
equal to the mean value of the quantum field ¢ (x,t) = <zﬂ(az, t)> and factoriza-
tion is assumed for the operator products involved in the motion equation for the

macroscopic wavefunction ¢(x, t).

Using the many-body theory of 3D Bose gases,'#*?% this approach can be proven to
be accurate in the case of dilute systems for which the mean interparticle distance
n~/3 is much larger than the scattering length a,; current trapped atomic conden-
sates well satisfy such a inequality. In other terms, for a constant mean-field inter-
action energy (proportional to na,), MFT is valid in the a, — 0 and n — oo limit in
which the interaction energy per particle is vanishing small and the discrete nature
of the matter field effectively washed out.

For the single mode cavity actually under examination, the mean-field approach
leads to a single differential equation for the mean value of the cavity field a(t) =
(a(t)) of the form

da_

E = (wo + anl ‘CL|2> a+ kincwince_ith - za (66)

2

from which we can immediately obtain the steady state value a(t) = ae~™* with

.kinc nc
i= inePine 6.7)
W, — Wo — 2wy |a|” + iv/2

If fluctuations of the cavity field are completely neglected, the transmitted field
'(;tr = 1@ has the same all-order coherence properties as the incident one.

For a given value of the mean-field interaction energy wp,s = 2w, |d|2, this approx-
imation is valid in the limit of very a small interaction energy w,; per atom; in this
case, in fact, fluctuations are irrelevant and the discreteness of the atomic field is
canceled by the very large number of atoms present in the cavity.

Although the application of Positive-P representation to the present system suffers
from the usual divergence problems,'® lowest-order fluctuations around the mean
value can however be obtained by studying the linearized!® version of the same
stochastic equations for which the solution is mathematically defined at any time.
In some sense, this linearization procedure generalizes to driven dissipative systems



152

Quantum (atom) optics

the well-known Bogoliubov approach?® for the description of the lowest-order fluc-
tuations in Bose condensates.

Within the Positive-P representation of the quantum field, the dynamics of the field
in a nonlinear single-mode cavity is described by a pair of stochastic differential
equations

do = [_i (Wo + 2wnia* @) @ + kincthinee”“H" — %a] dt + /= 2iwna’dn (6.8)
do* = [’t (Wo + 2wnia®) & + ki b7 €1 — %a*] dt + /2w ?dn, (6.9)

for the field variables «w and a*, which are now complex conjugate of each other only
in the mean. The noise terms d7; are independent Gaussian noise terms (dr; = 0,
dn; dn; = 6; jdt).? In terms of the stochastic field variables a and o*, the mean value
of any normally ordered observable can be expressed as

(a"a™y = aFmam. (6.10)

Linearizing the stochastic equations egs.(6.8) and (6.9) around the steady-state o =
ae~“rt, o* = @*e™r! of the deterministic evolution, we get to a pair of linear stochas-
tic equations for the slowly-varying field fluctuations da = ae™** — g and da* =

—twrt _ 5%

a*e a

dda = [—i (—Aw + 4w,y \ZL|2) da — 2iwya’ ot — %504} dt + \/ —2iwya2dn; (6.11)
dda’ = [i (=Aw + 4w [af*) 6" + i@ b — 200" | dt + v 2iwnadne. (6.12)

from which all the stationary moments can be extracted using the standard tech-
niques for the solution of linear stochastic differential equations.” We shall not
reproduce here all the details of the calculations, which can be found in the original
paper,'® but we shall only give the final results and compare them with the exact
result of our numerical calculations.

The mean transmitted intensity results given by

2
i At A i Winf

II‘:[CO [nC:_ =—|N —V | 6.13

oot o= 3 (00) =3 [+ ]| 619

the first term I.,,, which describes the coherently (i.e. elastically) transmitted in-
tensity, corresponds to the mean-field amplitude a; the second one I,,. accounts for
quantum fluctuations and therefore describes the incoherently (inelastically) trans-
mitted intensity. With Aw = w;, — w, we have denoted the detuning of the incident
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atom laser beam with respect to the empty cavity mode; N = |a|® is the mean-field
number of quanta in the cavity mode and wy; = 2w,;N is the corresponding fre-
quency shift of the cavity mode; finally, for notational simplicity, we have set

AMw) = {’L [(w—wr) + (Aw — 2wye)] + %} )

. {z [(w—wr) — (Aw — 2we)] + %} — w2, (6.14)

As expected, for a fixed value of the mean-field interaction energy w,,¢, the contri-
bution of fluctuations is inversely proportional to the number of atoms in the cavity
mode and thus vanishing small in the classical limit (w,; — 0, N — o0). With a
similar procedure we can determine the one-time second order correlation function
9 (0):

(a'a'aa) Wnf

(2) — —
g (O> <de>2 1+ ‘)\(WL)‘ N

Finally, a Fourier transform of the two-times first order correlation function leads to

(Aw — wWnt) - (6.15)

the spectrum of the transmitted intensity

S(@) = Seon(w) + Saelw) = 3 (@l (H)a(0)) =

_ 7 . Wi
- 1wt o)+ 5 sz} (616)

in which we again recognize the elastic and inelastic contributions; the former cor-
responds to the delta-function peak at w;, while the latter gives a pair of (inelastic)
Lorentzian peaks at the frequencies

wt=w, + \/Aw2 — 4Aw wpyr + 3w2 (6.17)

which correspond to the dressed states of the driven system. As we have discussed
in sec.3.3, poles at these same frequencies appear in the linear response of the driven
system to additional probe beams. Whenever the argument of the square root is
negative, the two peaks coalesce into a single one at wy..

These results are to be compared to the exact solution of the full master equation
eq.(6.4) obtained using the numerical technique sketched in the previous section. In
tig.6.2, we have plotted the coherent and the incoherent transmitted intensities /..
and I, vs. the incident intensity [i,c = v Wmc|2 for different values of the critical
number N, = v/w,; at zero detuning Aw = 0. In the plots, the intensities have been



154

Quantum (atom) optics

10°
(9V]
> —
~
'g 10 E //////////’/// -
\0 /////,,
SE 2 ~
10° == ‘ ‘
107 107 10°
107 | ‘ ‘ ]
N ]
> N
~
Q10° | e
S g
E /’////'//
8 _3 L7 P
10° 4 - -
10 10 2
o I /v
nl “inc

FIGURE 6.2: Transmission properties of a nonlinear Fabry-Perot interferometer
in the weak nonlinearity (large IV,) regime: in the upper panel, coherent inten-
sity Icon as a function of the incident intensity Ii,; in the lower one, incoherent
intensity I,,.. All intensities have been normalized to the characteristic inten-
sity 72 /wni. In the upper panel, the solid curve is the result of the linearized
approach, while the long- and short-dashed ones correspond to the exact calcu-
lations respectively for N, = 8 and N, = 2. In the lower panel, the solid and the
long-dashed lines are again the approximate results, while the short-dashed and
the dot-dashed are the exact ones. The upper curves are for N, = 2 the lower
ones are for N, = 8.

normalized in units of the characteristic intensity v?/w,; = 7N, so that the mean-
tield curves for the coherently transmitted intensity superimpose on each other ex-
actly.

In the zero detuning Aw = 0 case we are considering, MFT (eq.(6.7)) predicts an op-
tical limiter behavior for the transmitted intensity: for growing intensities, in fact,
the mean-field interaction energy 2%w,; |a|* tends to shift the cavity mode out off
resonance with respect to the incident beam and thus to lower the effective trans-
mittivity. In particular, while at low intensity the transmitted intensity grows lin-
early with the incident intensity, in the large intensity limit the transmitted intensity
grows only as its power 1/3. In a log-log scale, the transition between these two
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regimes can be observed as a rather smooth bending.

The discrepancy of the MF result for the coherently transmitted intensity with re-
spect to the exact one is concentrated mostly in the crossover region and, as ex-
pected, tends to disappear in the classical limit NV, — oo (see upper panel of fig.6.2).
An analogous comparison can be made for the incoherently transmitted intensity
(see lower panel of the same figure): at lowest order (eq.(6.13)), such a quantity
is a factor of N lower than the coherent contribution and thus its relative weight
vanishes in the classical limit. As expected, the discrepancy of the MF result with
respect to the exact one is of higher order in N, .
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FIGURE 6.3: Coherence properties of the transmitted beam as a function of
the incident intensity i,.: in the upper panel, long-time first-order coherence
n = Isn/I; in the lower panel, one-time second-order coherence g@(0) =
(atataa) / <&T&>2. The solid and the dotted curves are the approximated results
of linearized theory respectively for N, = 8 and N, = 2, while the long-dashed
and the dot-dashed are the exact ones for the same parameter choices. The ar-
rows in the lower panel are the predictions of the analytical expression eq.(6.21)
for g (0) in the low-intensity limit.

In the upper panel of fig.6.3, we have plotted the first order long time coherence of
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the transmitted beam

_ Leon _ limgoo (@1 (t)a(0))]
1= T T @ (0)a) (619

as a function of the (normalized) incident intensity for different values of the critical

number N,. All curves show a single minimum at a value of the incident intensity
which, being related to the crossover in the optical limiter response curve, results
approximately proportional to vN,; the depth of such a minimum is approximately
inversely proportional to IN,. Perfect coherence n = 1 is recovered in the classical

limit N, — oo.

A similar behavior is found also for the one-time second-order coherence ¢*(0)
which is plotted in the lower panel of the same figure; a value for ¢?(0) smaller
than 1 means that the transmitted beam is antibunched, i.e. has reduced intensity
fluctuations as compared to a classical coherent beam. Such a quantum property
is a consequence of the optical limiter response and is at lowest order inversely
proportional to N,

As previously, the MF result is found to keep track in a correct way of the lowest
order fluctuations: the discrepancy with the exact result is in fact of higher order in
N1 for any incident intensity. In particular, for the low intensity limit /;,c — 0 the
mean field theory predicts g@ — 1 (see eq.(6.15)), since in this regime the system
behaves as an effectively linear one. On the other hand, the exact calculation gives a
value lower than 1, which is an unambiguous signature of the discrete nature of the
tield: while the C-number variable which describes the field in the linearized treat-
ment can assume any value, the quantum system can only be in a discrete ladder of
states. For an incident beam at exact resonance with the empty cavity, the |n = 1)
state is on resonance, while the second excited one |n = 2) is already out of reso-
nance of a finite frequency 2w,,;. A straightforward but somewhat lengthy analytical
calculation for the steady state value of the density matrix p., at lowest order in I,
leads to the expressions

e 4 |kinc¢inc|2
i ——

1 =~ 2 (6.19)

and

8 |/€mc¢mc|4
g O 6.20
2 = 0032 1 4u?) (6.20)
for the matrix elements pi{ = (n = 1|pe|n = 1) and p53 = (n = 2|peq|n = 2). From

these expressions, it is immediate to obtain an expression of the one-time second
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order coherence function

2050 1
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which is valid in the low-intensity limit for any value of IN,. This exact analytical
prediction is marked with horizontal arrows in the lower panel of fig.6.3 and the
agreement with the numerical result is excellent. As expected, in the classical N, —
oo limit, the analytical expression eq.(6.21) tends to the mean-field prediction of 1
and, at lowest order, the discrepancy is proportional to N, 2.
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FIGURE 6.4: Incoherently transmitted intensity spectra: in the upper panel,
N, = 8; in the lower one, N, = 2. The solid lines refer to the exact calcula-
tions, while the dot-dashed ones are the result of the linearized approach. The
incident intensities are equal to Iin. = 0.64 and I, = 16 for the upper panel
spectra, and to Iin. = 0.1 and Iin. = 20 for the lower panel ones.

Finally, in fig.6.4 we have plotted a few spectra of the inelastically transmitted in-
tensity in the zero detuning (Aw = 0) case and we have compared the approximate
result of MFT to the exact one. Apart from the small central peak at w = w;, = w,
which appears at smaller values of NN,, both the position and the intensities of the
external peaks as predicted by the MFT are in excellent agreement with the exact
result. As previously, the larger the IV, parameter, the closer the similarity.
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In the present section, we shall not specifically address the case of a detuned driving
field Aw # 0 and we shall limit ourselves to a few remarks. In the case where the
detuning has opposite sign with respect to the nonlinear frequency shift of the cav-
ity mode, the feedback of the nonlinearity on the transmission is still negative and
leads to the same optical limiter behavior previously described; only the frequen-
cies of the dressed modes eq.(6.17) result different. On the other hand, when the
detuning has the same sign as the nonlinear shift, the feedback of the nonlinearity
results positive and MFT predicts the possibility of multiple steady-state solutions
of eq.(6.7) for a single value of the incident intensity.®® In this case, the linearized
theory can account only for the fluctuations occurring in the neighborhood of each
steady-state,'® but it does not keep track of effects related to quantum tunneling

49,156,244,261,262 N evertheless, the numerical solution

from one steady-state to another.
of the full master equation eq.(6.4) can provide us exact results for the coherence

properties of the transmitted beam; this topic will be matter of sec.6.4.

6.3 Strong nonlinearity: the (atom) blockade effect

In the previous section we have discussed the solution of the quantum master equa-
tion eq.(6.4) in the weak nonlinearity N, > 1 regime in which the exact numerical
solution is accurately approximated by the analytic mean-field result. In that case,
in fact, the behavior of the quantum field has been shown to be well reproduced by
a classical field while the discrete nature of the field was taken into account simply
by means of noise terms in the stochastic motion equations eq.(6.11)-(6.12). Unfor-
tunately, an exact solution of the complete Positive-P equations eq.(6.8)-(6.9) does
not mathematically exist for small values of the critical number N, because of the

well-known divergences of the wavefunction.'®

Since a relatively small value of the
critical number N, implies that only a moderate number of Fock states are actually
involved in the dynamics, a numerical calculation in the Fock basis can be easily
performed within a reasonable computation time; moreover, the results of the nu-

merical calculations are themselves best understood in the number-state basis |n).

In this basis, the Hamiltonian of the driven nonlinear single-mode cavity has the
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form:
0 Ee~wrt 0 0
H gi*eith Wo ﬂgie—iwl,t 0
5= 0 V2Erert 2, + 2wy V3 et (6.22)

0 0 V3EFEWrt 3w, + 6wy

For a vanishing driving &; = ik;n.9in., the eigenvectors of H are the Fock states |n)
themselves, and their eigenenergies are equal to nw, + n(n — 1)w,;; because of the
presence of nonlinear interactions, the energy splitting of adjacent modes, given by
Wo + 2nwy,, is a monotonically increasing (decreasing) function of n for repulsive

(attractive) interactions.

In the zero-detuning (Aw = 0) case, only the transition |n=0) — |n=1) is on
resonance with the driving field; indeed, the higher states are shifted off the n-atom
resonance of a frequency (n—1)w,,;. In particular, an incident intensity of the order of
8w?, /v = 8vy/NZ is required for the Rabi frequency |&;| of the driving field to be equal
to the detuning of the |n = 2) level and thus for this to be effectively populated.

This physical picture is confirmed by the results of the numerical calculations re-
produced in fig.6.5 and 6.6: for moderate intensities [}, < I, = /N2, the cavity
shows a behavior analogous to the one of a driven two-level system; in particular,
the transmitted atomic beam has the same statistical properties as the resonance flu-
orescence from a single two-level atom."* Such an effect is the atom optical analog

of the well-known Coulomb blockade of electronic systems?63-266

in which the change
in the electrostatic potential following the injection of a single carrier inside the de-
vice is able to bring the energy of its electronic states above the Fermi level of the
injector and thus forbid the injection of other carriers. In the atomic case, the colli-
sional interaction energy following the presence of a single atom is able to shift the
cavity mode frequency of an amount equal to 2w,,; if the incident beam is initially
on resonance with the cavity, and if we are in a strong nonlinearity regime w,; > v,
the entrance of a second atom in the cavity is an off-resonant process, and thus it is
strongly suppressed. This means that before a second carrier can enter the cavity,
the first one must have left. As usual, the antibunching of the transmitted beam
which follows from this atomic blockade effect results in a suppression of intensity

fluctuations well below the shot-noise limit.

For strong nonlinearities (/V, < 1), the characteristic incident intensity scale I, for
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FIGURE 6.5: Transmission and coherence properties of a nonlinear Fabry-Perot
interferometer in the strong nonlinearity regime (N, = 0.125) as a function of
the incident intensity: in the upper panel, transmitted intensity I;, (solid line),
coherent I, (dashed line) and incoherent I,,. (dot-dashed) components. In the
lower panel, long time first order coherence 7 (solid line) and one-time second
order coherence ¢(*)(0) (dashed line). Atom Blockade behavior occurs for Ij,.
comprised between Iy,¢ = v and I, = 64 (vertical dashed lines).

the saturation of the two-level system, which is of the order of v, is well separated
from the characteristic intensity I, = v/N? for substantial population of the |n = 2)
state. Hence it exists an intensity window Ig; < Iinc < I3 in which the two-level
system is effectively saturated but the higher excited states are still unpopulated: in
this window (denoted by the vertical dashed lines in fig.6.5) the atom blockade is
most effective in imposing the strict upper limit /;, < 7/4 to the total transmitted
intensity. In this same intensity window, the spectral distribution of the transmitted
intensity is characterized by the usual coherent delta-like peak at w;, due to coherent
(elastic) transmission plus a triplet of peaks (the so-called Mollow triplet™) resulting
from incoherent transmission (see fig.6.6).

The intensity scale separation /s,; < I translates into the characteristic dependence
of the total transmitted intensity on the incident intensity that can be observed in
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FIGURE 6.6: Incoherently transmitted intensity spectra in the strong nonlinear-
ity regime (IV, = 0.125) for growing values of the incident intensity: in the upper
panel, fi,c = 0.2,2,6.5; in the lower one, i, = 20, 60,240. The arrows corre-
spond to the transition frequencies resulting from the dressed cavity approach;
the chosen parameters are the same (finc = 6.5,240) as for the solid line spec-
tra. In the lower panel, solid arrows correspond to transitions involving only
the |n =0, 1) states, while the dotted and dashed ones correspond to weaker
transitions which involve respectively the |n = 2) and the |n = 3) states.

the upper panel of fig.6.5: first of all, when the two-level system is not saturated,
the transmitted intensity is a linear function of the incident one; then, for I, of
the order of v, saturation of the two-level system occurs and the response flattens.
Finally, for I, of the order of v/N2, the transmitted intensity starts to grow again
thanks to the contribution of the |n = 2) state.

The behavior of the single coherent and incoherent contributions to the transmitted
intensity as functions of the incident intensity can also be interpreted within this
same picture. As in the classical two-level system,! at low incident intensities most
of the transmission is coherent, since the coherent fraction /., is a linear function
of Ii,. and the incoherent fraction I, a quadratic one. When the two-level system is
appreciably saturated, the incoherent fraction starts to dominate, while the coherent
one drops to nearly zero. As the incident intensity grows even further, more than
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one atom can be simultaneously stored in the cavity mode, so that the |n = 2) state
results populated as well; therefore the coherent component starts to grow again,
while the incoherent one to decrease. In other terms, the first order coherence 7
shows a minimum as a function of the incident intensity at a value corresponding to
the saturation plateau of the two-level transition. The population of the |n = 2) state
can be singled out just by looking at the one-time second-order coherence function
g?(0): for the ideal two-level system this quantity is rigorously zero for any value
of Iin.; any departure from this value is a unambiguous signature of a population of
the |n > 2) levels. For low incident intensities g? (0) has the very small value N2 /4
(see eq.(6.21)), while it is substantially larger than zero only above the saturation
plateau.

In order to explain the incoherent transmission spectra reproduced in fig.6.6, it can
be useful to apply the dressed states technique to the physical system formed by the

cavity plus the driving field.%

In analogy to what is usually done in the dressed
atom model, we shall label the quantum states of such system with a pair of integer
numbers (N, n), respectively denoting the number of atoms in the driving field and
in the cavity mode. In the dressed atom model, the integer number n is generally
replaced by a discrete index running over the different internal states of the fluo-
rescing atom and A has the physical meaning of number of photons in the incident

laser beam.

Neglecting for the moment the radiative damping of the cavity mode, the total num-
ber of atoms Ny = N + n is a conserved quantity; since N is assumed to be very
large, adjacent manifolds have the same structure and are spaced from each other by
an amount equal to the incident laser frequency w;; in particular, the corresponding
eigenstates only differ for the number N of atoms in the driving field. Within each
constant Ny manifold, the Hamiltonian of the dressed system in the Fock |n) basis
has the simple form

0o & 0 0
& —Aw V2E; 0

% =1 0 V2& —2Aw+ 2wy V/3E; . (6.23)
0 0 V3E: —3Aw + 6wy

As it is sketched in fig.6.7a, transitions between one manifold to the immediately
lower one occur because of radiative losses through the non-perfectly reflecting mir-
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rors and give rise to the incoherent component of the transmitted beam. Denoting
with w, the energy of the |¢,,) eigenstate of a manifold, we expect that the spectrum
of incoherently transmitted atoms will be peaked at the frequencies wy, + (wo, — wg);
the intensity of each peak is proportional to the matrix element of the corresponding
transition | (1, |d|13)|” times the population N, of the departure level [1),,).

For moderate intensities [, < /N2 the mixing of the bare states into the new
dressed states is limited to the two lowest states of the manifold, while the upper
states nearly coincide with the |n > 2) states and are nearly unpopulated; for this
reason transitions involving these upper states give a negligible contribution to the
incoherent transmission spectra. In this regime, these spectra are thus the usual
Mollow spectra of resonance fluorescence from driven two-level systems: at very
low intensity, there is a single peak at w,; for intensities at least of the order of the
saturation intensity |£;| ~ v, there starts to be a symmetric triplet of peaks at respec-
tively w, and w, £ |&;|, the central peak having a height three time larger than the
lateral ones (see fig.6.6b).

At stronger intensities, when a larger number of states of the cavity begins to be
effectively populated, the structure of the manifolds becomes more complex and
additional peaks can be found in the wings of the fluorescence spectra; the stronger
the driving field, the larger the mixing of |n > 2) states with the lower ones and
consequently the stronger the intensity of the peaks corresponding to transitions
involving such states.

A simple numerical diagonalization of the Hamiltonian eq.(6.23) gives the frequen-
cies of the peaks: in fig.6.7b we have reproduced the dependence of the frequency of
the lowest dressed states on the driving strength. Obviously, since the higher state
population is very small as well as the matrix elements of the transitions reaching
them, only a few peaks are visible in the actual spectra plotted in fig.6.6. Compar-
ison between the two approaches is easily made: the transition frequencies as they
are predicted by the dressed state picture have been marked by vertical arrows; the
agreement with the numerical peaks is excellent. Solid arrows refer to the transitions
involving only |n = 0) and |n = 1), which are visible at any intensity; on the other
hand, dotted (dashed) arrows denote transitions which involve the |n = 2) (|n = 3))
state as well; given their weakness, the corresponding peaks can be distinguished
from the underlying pedestal only at high intensities.

Remarkably, the intensity of the central peak at w, decreases for growing intensity
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FIGURE 6.7: Strong nonlinearity regime (N, = 0.125): sketch of the dressed
cavity level scheme (panel a); dressed state frequencies (panel b) as a function
of the incident intensity i, for the Aw = 0 case. The vertical dashed lines
correspond to the intensity values used in fig.6.6.
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with respect to the first pair of side peaks: this evolution suggests a smooth tran-
sition towards the two-peaked spectra obtained by means of the semiclassical ap-
proach described in the previous section; at very high driving intensity, in fact, when
the mean occupation number of the cavity is much larger than one, fluctuations re-
sult again well described by the linearized theory of the previous section.

S, (o) (a.u.)

((U_wo )/7

(wL_wo)/y

FIGURE 6.8: Effect of a finite detuning Aw on the incoherently transmitted in-
tensity spectra in the strong nonlinearity regime (IV, = 0.125, I;;,c = 160): in the
upper panel, spectra for Aw/y = —8,0, 8 (respectively, dashed, dot-dashed and
solid lines); arrows indicate the transition frequencies according to the dressed
cavity model: solid arrows refer to the Aw/y = 8 spectrum, dotted arrows to
the Aw/vy = —8 one. In the lower panel, plot of the dressed state frequencies as
function of the detuning Aw. The vertical dashed lines correspond to the values
of the detuning which have been used in panel (a).

The dressed cavity model can be extended to the case of a non-vanishing detuning
Aw as well: the positions of the peaks are again well reproduced in terms of transi-
tions connecting dressed states of adjacent manifolds. In the upper panel of fig.6.8
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we have plotted a series of spectra for different detunings: the spectra are centered
at the incident frequency w;, i.e. the spacing between adjacent manifolds.

When Aw and w,; have opposite signs, the nonlinear feedback on transmission is
negative and the population of the upper states of the manifold is further reduced
with respect to the Aw = 0 case; the lateral peaks in the spectra are therefore even
weaker. On the other hand, when Aw and w,,; have the same sign and the nonlinear
feedback is positive, the population of the upper states of the manifold is enhanced
and the spectra show a larger number of peaks. As previously, their frequencies re-
sult in good agreement with the predictions of the dressed cavity model, which are
marked with arrows in the figure. In the lower panel of the same fig.6.8, we have
specifically plotted the position of the different dressed states as function of the de-
tuning as they have been determined by numerically diagonalizing the Hamiltonian
eq.(6.23).

6.4 Quantum tunneling effects in optical bistability

In the previous section we have studied the coherence properties of the transmitted
atomic beam in the case the incident beam is exactly on resonance with the empty
cavity; these effects are the generalization to the quantum N, < 1 regime of the well-
known optical limiting effect which is observed whenever the nonlinearity gives a
negative feedback on the transmittivity.

For the case of repulsive interactions, the nonlinear shift w,,; of the cavity resonance
is a positive quantity and optical limiting occurs if w; < w,; on the other hand, opti-
cal bistability is expected to occur in the opposite w; > w, case, when the nonlinear
feedback on the transmission is positive.

In this case, the mean-field steady-state equation eq.(6.7) possesses multiple solu-
tions for a given range of incident intensities; if all fluctuations are neglected, such
solutions correspond to true steady states which last for an indefinite time. This
picture is clearly correct only for sufficiently large values of N,: as we have dis-
cussed in the previous section, the amplitude of quantum fluctuations is inversely
proportional to NN,, so that a large N, means that the fluctuations explore only a
small neighborhood of the steady state and the probability of a fluctuation large
enough to induce a tunneling event from one steady state to another is exponen-

tially small, 156,261,262
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For smaller values of the critical number N,, tunneling effects from one branch of
the bistability curve to the other start to be important even for a perfectly coherent
incident beam; in this case, a linearized treatment of fluctuations is not sufficient any
more and a full quantum calculation has to be performed by numerically solving
the complete quantum master equation in some representation;*** given the range
of parameters we are interested in, our numerical calculations have been performed
in the same Fock state basis as before.

From the point of view of the master equation, optical bistability emerges in the
steady-state of the density matrix simply as a statistical mixture of the two steady-
states of the mean-field approach, the “transmitting” and the “non-transmitting”
ones; formally, the density matrix can therefore be written in the form

pss = a1pl) + azpl? (6.24)

where each of the components piv?) describes a state in which the number of quanta
in the cavity is almost constant and equal to the corresponding mean-field solution;
the fact that the steady-state density matrix is a mixture physically follows from
the tunneling events which connect one state to the other and determine the rela-
tive weights a4 » of the two components. From the point of view of the correlation
functions of the cavity field, optical bistability reflects into the appearance of two
different time scales in the relaxation dynamics: a fast 7; &~ v~! time scale corre-
sponds to the equilibration of each of the p(!"? towards its steady-state pis?, while
the slow 7, time scale corresponds instead to the final equilibration of the weights

of the two components a4 » through the tunneling events.

In the left panel of fig.6.9, we have plotted the characteristic transmitted vs. inci-
dent intensity curve for an example of nonlinear cavity: unlike the mean-field result,
the full quantum calculation for the mean transmitted intensity does not show any
bistable behaviour, the resulting value being the average over the two Pty compo-
nents. This can be better observed in the probability distribution for the number of
quanta in the cavity that has been plotted in the right panel: as expected, this shows
two maxima for incident intensities within the mean-field bistability loop;'*® the
smooth transition from a single peak around the empty cavity (“non-transmitting”
state) towards a single peak at a non-zero value (“transmitting” state) follows the

smooth rearrangement of the weights o » of the two components.

The characteristic bi-peaked shape of the atom-number probability distribution re-
flects into a peculiar behaviour (fig.6.10) of the second-order coherence function: at
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FIGURE 6.9: Left panel: Characteristic transmitted vs. incident intensity curve;
Aw = 37, wy = 0.57. Solid line: quantum calculation. Dashed line: mean-
field result. Vertical lines correspond to the incident intensities used in the right
panel and in fig.6.10. The disagreement at large incident intensities is due to
quantum fluctuations around the (single) mean-field steady state. Right panel:
Atom-number probability distribution for different values of the incident inten-
sity Iine/v = 0.28 (solid), 2.8 (dashed), 3.1 (long-dashed), 6.7 (dot-dashed).
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FIGURE 6.10: Second-order coherence function ¢(? (t) for different values of the
incident intensity I;y,./v = 0.28 (solid), 2.8 (dashed), 3.1 (long-dashed), 6.7 (dot-
dashed). Same cavity parameters as in fig.6.9.
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very short times ¢®(t ~ 0) shows a value definitely larger than one; after a few
oscillations, quickly damped on a time scale of the order of 7, ¢ (¢) exponentially
relax to the long-time value of 1 within a slow characteristic time 7, > 7; deter-
mined by the tunneling rate. This behaviour is easily explained: the detection of a
first atom projects the density matrix mainly on its large n component; the observa-
tion of a second atom after a short time has now an enhanced probability; the fast
relaxation follows from the fact the projected density matrix is not exactly equal to
the steady-state P2, At longer times, tunneling events tend to reequilibrate p to the
steady state p,s; as we can see in fig.6.11, for incident intensities within the mean-
field hysteresis loop, the characteristic time 7, of the exponential decay turns out to
be much longer than the cavity damping time .
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5 |
¥ S

FIGURE 6.11: Tunneling time 75 as a function of the incident intensity. Same
cavity parameters as in fig.6.9. Vertical lines correspond to the boundaries of the
mean-field bistability region.

If the detuning of the incident beam Aw = w; — w, is such that the cavity energy
nw, +n(n—1)w, is on resonance with the incident beam after the injection of n = N,
atoms
N, =1+ &, (6.25)
Wnl
a sort of n-atom transmission process is expected, in much the same way as n-
photon absorption occurs if a laser beam is resonant with a n-photon atomic tran-

sition at w, = nwr. In physical terms, we expect that the transmitted beam in the
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limit of very low incident intensity will be formed by a sort of discrete bunches con-
taining a number of atoms of the order of N, and separated by intervals of time in
which no atom is present; since there is no physical binding between the atoms in
the transmitted beam, the bunches are quickly spred out because of the curvature
of the atomic dispersion and thus can be observed only at moderate distances from
the cavity.
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FIGURE 6.12: Value of the n* order coherence function g(" (0) as a function of
n in the weak incident intensity limit. Aw/w,; = 3 (solid: N, = 7), 2.5 (dashed:
N, = 6), 2 (long-dashed: N, = 5); w,; = 0.57y. Dot-dashed line: g(”)(O) for the
case of a thermal beam.

This physical idea can be formalized*® in terms of the coherence functions of the
transmitted beam: if we plot the value of the n*"-order coherence function g™ (t =
0) as a function of the order n, we expect it to be peaked around the number of
atoms within the bunch. From the numerical calculations summarized in fig.6.12
it is immediate to observe that the value of g™ can be substantially larger than
the corresponding value for a chaotic thermal beam: this is a clear signature of a
strong bunching effect. Furthermore, the maximum of g™ is found around n = 2N,
and the maximum of its slope is around n ~ NV,; these last results are in qualitative
agreement with the simple physical picture of the discrete bunches.
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6.5 Conclusions and perspectives

In the present chapter we have investigated the nonlinear atom optical effects which
arise from atom-atom collisional interactions in a single-mode atomic Fabry-Perot
cavity driven by a coherent atom laser beam; in particular, we have numerically
solved the full quantum master equation in a number-state basis and we have given

a physical interpretation of the obtained results.?®

Provided the nonlinear interaction energy per atom is small, the exact results are
well reproduced by the mean-field theory in which the atomic field is described as
a classical C-number field and quantum fluctuations are taken into account using
a linearized version of the stochastic differential equations of Positive-P representa-
tion.

In the opposite limit of strong nonlinearity, the mean-field theory breaks down; for
an incident beam exactly on resonance with the empty cavity, a sort of atom block-
ade effect is predicted: the presence of a single atom in the cavity mode pushes the
mode frequency off-resonance from the incident field so that a second atom can not
enter the cavity but at very large incident intensities. The statistical properties pre-
dicted by the numerical calculations are very similar to the resonance fluorescence
ones from a two-level system. A very strong incident beam is necessary for several
atoms to be simultaneously forced into the cavity mode; this is reflected in a pecu-
liar behavior of the transmitted intensity a function of the incident intensity. The
multiplet of peaks which characterizes the spectral distribution of the incoherently
transmitted atoms can be interpreted as arising from radiative transitions between
dressed states of the driven cavity: the agreement between the predictions of the
dressed cavity model and the frequencies of the numerical peaks is excellent.

For the case of a positive nonlinear feedback on transmission, mean-field is well-
known to predict atom optical bistability. A complete treatment of the problem in
terms of the density matrix has confirmed the expectation that the steady state den-
sity matrix is a statistical mixture of the two mean-field steady states (the “transmit-
ting” and the “non-transmitting” ones) and tunneling events allow for transitions
from one of them to the other in a finite time 7,; the larger the critical number N,,
the longer the tunneling time and therefore the more “classical” the behaviour of the
system. From the point of view of the coherence functions, in addition to the usual
damping time 77 ~ 7!, a longer time scale appears, corresponding to the tunneling
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time 7,; as an example, the second-order coherence shows a long-time exponential
tail with a time constant equal to 7.

If the detuning of the atom laser from the cavity mode is such that the simultaneous
injection of NV, atoms is a resonant process since N,wr, = N,w, + N, (N, — 1)w,, a sort
of N,-atom transmission phenomenon occurs, in which the atoms are most likely
transmitted in bunches containing a number of atoms of the order of N, separated
by time intervals in which no atoms are present. Such a simple physical picture is
confirmed by numerical calculations for the coherence function ¢ (0) of the trans-
mitted beam as a function of n.

Although all the discussion is mainly focussed on the case of atomic Fabry-Perot
cavities, similar results hold for optical resonators filled of a nonlinear medium; in
this latter case, since the intrinsic optical nonlinearity of current materials is gener-
ally very weak, clever schemes have to be adopted in order to enhance the nonlinear
coupling per photon and depress losses so to attain the quantum N, < 1regime. On
the other hand, the Fabry-Perot cavity for atomic matter waves proposed in chap.5
is expected to be already close to this condition.
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Chapter 7

A stochastic macroscopic
wavefunction approach to the
interacting Bose gas

In the previous chapter we have studied the quantum dynamics of an interacting
Bose field spatially localized in a Fabry-Perot cavity driven by an external coherent
field: the discrete mode structure of the cavity has suggested a single-mode approx-
imation which has allowed for calculations to be performed in a reasonably small
Hilbert space.

Here we shall address the much more difficult case of a spatially distributed field
for which a large number of modes has to be taken into account: for instance, this
is the case of a trapped atomic Bose condensates. A brute force approach to the
N—body problem inside a trap would require to cope with a Hilbert space with a
dimension equal to m”, m being the number of field modes to be considered; for any
practical case, such a task is numerically untractable and other techniques have to
be developed; the calculations described in the previous chapter have been possible
only thanks to the m = 1 condition.

At very low temperature, a simple theoretical description of the dynamics of these
multimode systems is obtained by making the usual mean-field approximation, in
which all the atoms are assumed to share a single quantum state and the uncon-
densed fraction is completely neglected. In this approach, the wave function of the
condensate obeys the Gross-Pitaevskii equation eq.(4.21) in which the interactions
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between the atoms are described by a simple cubic term; such an approach neglects
two- and more-particle correlations and is valid at zero temperature under a dilute-
ness condition which is usually stated in terms of the density n and the scattering
length a of the gas as (na®)'/? < 1; current gaseous condensates satisfy such a condi-
tion but finite temperature phenomena are not included in this mean field approach.

In the present chapter, we shall describe the principles of a novel approach to the ex-
act time-evolution of an interacting Bose gas: we shall discuss how a generalization
of the Gross-Pitaevskii equation including a stochastic term leads to an exact refor-
mulation of the time-dependent N-body bosonic problem in terms of the stochastic
evolution of single particle wavefunctions. In this way, an exact and numerically
tractable approach to the problem of the interacting Bose gas is obtained, an ap-
proach not restricted to thermal equilibrium case but which allows for the study of
the time evolution of any observable of the quantum gas under examination.

The principle of the method is based on the stochastic evolution of an Hartree state
ansatz in which all atoms share the same wavefunction and this latter evolves ac-
cording to a stochastic partial differential equation. Depending on the specific form
of the Hartree states — either Fock states with a fixed number of atoms or coherent
states can be used — different forms of the stochastic evolution can be obtained with
completely different statistical properties. Since the exactness conditions do not
completely determine the form of the stochastic evolution within a given ansatz,
a further freedom in the choice of the specific form of the stochastic equations is
available for the optimization of the statistics and the stability of an actual simula-
tion. As a particular solution within the coherent state ansatz, we have recovered

49,170,270

the stochastic scheme of the positive-P representation; although this specific

° other schemes have

choice is well-known to have serious instability problems,16
been found to give differential equations with a regular solution for all times; in

these cases, the efficiency of the method is only limited by the computational time.

In sec.7.1, we shall present the stochastic formulation of the many-body problem
and we shall determine the conditions for recovering the exact evolution after the
average over the stochastic noise. The following sec.7.2 is devoted to the presenta-
tion of two particular schemes implementing this stochastic formulation: we first
present a simple scheme, which minimizes the statistical spread of the calculated V-
atom density matrix, and then a more elaborate scheme in which the trace of the
calculated density matrix is strictly fixed in the evolution so as to reduce the sta-
tistical error of an actual simulation. With this latter constraint, we recover for the
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coherent state ansatz the known stochastic simulation associated with the positive-P
representation;'”’ unfortunately, such constant trace simulations are subject to diver-
gences of the norm of the wavefunction which explodes to infinity after a finite time.

In secs.7.3 and 7.4 we finally investigate two examples (a two-mode model and a
one-dimensional Bose gas) which illustrate the accuracy and the limitations of the
methods. Generally speaking, we find that the simple simulations are only limited
by the computation power: the number of realizations needed for a good statistical
accuracy increases exponentially with the time with an exponent v o« NV (0). For
this reason, these simple schemes are not well suited to determine small deviations
from the mean-field approximation in the large N limit but can be more efficiently
applied to systems with a small number of particles, such as small atomic clouds
tightly trapped at the nodes or antinodes of an optical lattice. On the other hand,
the divergences of the norm of the wavefunction which characterize the constant
trace simulations impose serious limitations to their practical use.

Although the discussion of the present chapter is mainly focussed on the dynam-
ics of trapped atomic ensembles, there is no reason not to extend the approach to
multimode nonlinear photonic systems such as planar microcavities: thanks to the
analogy between interacting matter and light waves, the same interaction Hamilto-
nian used for the collisional atom-atom interactions can be applied to describe the
third order polarizability of nonlinear optical materials with an intensity-dependent
refraction index.

In particular, the stochastic techniques developed in the present chapter can be ap-
plied to the study of the quantum correlations among the different transverse modes
of the light field of a planar system: in this case, in fact, the transverse modes are
not well spaced in energy and a single mode approximation is not allowed; as the
quantum depletion of the condensate or the damping of large amplitude collective
excitations can give rise to a cloud of non-condensed atoms, in the same way non-
linear photon-photon interactions can populate modes other than the driven one.
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7.1 Stochastic formulation of the N-boson problem us-

ing Hartree functions

The Hamiltonian of the trapped interacting Bose gas under examination can be writ-
ten in terms of the Bose field operator ¥(z) as:

H= /dx Ut (2)hoW(x) + % //dx dz’ Ut () U (2" )V (2 — ')V (') U () (7.1)

where z is the set of spatial coordinates of a particle, iy = —%V2 + Vixe(2) is the
single particle Hamiltonian in the external confining potential V., and where inter-
actions are assumed to occur via a two-body potential V(z — 2’).

In practice we consider the dilute gas and the low temperature regimes, which cor-
respond respectively to nja]* < 1 and |a| < A for a three-dimensional problem
(A = h/(2mrmkgT)"? is the thermal de Broglie wavelength). The true interaction
potential can then be replaced by a simpler model potential leading to the same
scattering length a provided that the range b of this model potential is much smaller
than the healing length ¢ = (87na)~'/? and than \. This ensures that the physi-
cal results do not depend on b. For simplicity we will use here repulsive Gaussian
potentials corresponding to a positive scattering length a > 0.

7.1.1 A stochastic Hartree Ansatz with Fock states

From a mathematical point of view, the exact evolution of the N-body density ma-
trix p can be obtained from the Hamiltonian eq.(7.1) using the quantum-mechanical

equation of motion

. 1

p(t) = — [, p(0)] 7.2)
but any concrete calculation is impracticable even for moderate particle numbers N,
due to the multi-mode nature of the problem leading to a huge dimensionality of

the N—body Hilbert space.

For this reason approximate theories have been developed in order to get useful
results at least in some specific ranges of parameters; the simplest one is the so-
called mean-field theory, in which the N-particle density matrix is approximated by
a Fock state Hartree ansatz

p(t) = [N : () )(N = o(t)]. (7.3)
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The evolution of the normalized condensate wave function ¢ is determined using a
variational procedure. The result of such a procedure is the well-known mean-field
equation

¢#ﬁ§>—(—fzz+nm@0¢mm4N—m(/ﬁvvu—fﬂwfw)mm.wm

For an interaction potential V' (x — 2’) modeled by a contact term gd(x — z’) (where

g = 4mh*a/m in a three-dimensional problem) it reduces to the Gross-Pitaevskii
equation commonly used to analyze the dynamics of pure Bose-Einstein condensed
gases.

A first attempt to improve the accuracy of the Hartree ansatz eq.(7.3) is to allow for
a stochastic contribution dB in the evolution of the macroscopic wave function ¢:

ot +dt) =o¢(t)+ F dt+dB . (7.5)

In all this chapter the noise dB is treated in the standard Ito formalism:*’ it is as-
sumed to have a zero mean dB = 0 and to have a variance dB? x dt; a deterministic
contribution is given by the force term F'dt. In this framework, the N-body density
matrix would result from the stochastic mean over noise or, in other terms, from
a mean over the probability distribution P(¢) in the functional space of the wave
functions ¢:

o) L(IN 60N 00]) = [DoP@)IN: 60N o). 70

An immediate advantage of this prescription over the pure state ansatz eq.(7.3) is
that it can deal with finite temperature problems.””! However as shown in sec.7.1.4,
the simple generalization eq.(7.5) of the Gross-Pitaevskii equation cannot lead to an
exact solution of the N-body problem ©@. We have therefore to enlarge the family of
dyadics over which we expand the density operator; more precisely we use Hartree
dyadics in which the wave functions in the bra and in the ket are different:

o(t) =[N :o1(t) )(N = da(t)] (7.7)

The two wave functions ¢;(z) and ¢,(z) are assumed to evolve according to Ito
stochastic differential equations:

Galt +dt) = do(t) + Fa dt +dB,  (a=1,2). (7.8)

@One can show that the distribution P(¢) evolves according to a functional Fokker-Planck equa-
tion with a non-positive diffusion coefficient and therefore cannot be simulated by a Brownian
motion of ¢. In quantum optics this problem is known to occur in the Glauber-Sudarshan P-
representation of the density matrix [239, chap.10, §7].
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The expansion eq.(7.6) is then replaced by
p(t) = (IN:61() (N : a(0)]) =

stoch
=/ Dé1 Doy P(b1,62) [N 61() ) (N : do(t)]. (7.9)

We will see in the following that within this extended Hartree ansatz one can find a
stochastic evolution for ¢, » reproducing the exact time evolution.

Actual calculations (sec.7.3 and 7.4) will be performed with a Monte-Carlo tech-
nique, in which the evolution of the probability distribution P is simulated by a
large but finite number N of independent realizations ¢§f>2(t), i=1,...,N. Atany
time the (approximate) density matrix p is given by the mean over such an ensemble
of wave functions:

N
o) = = SIN 0}V - 600 7.10)

The expectation value of any operator O is thus expressed by:

<O> ~ % ﬁ/: <N L 69 ()OI - ¢§i)(t)> . (7.11)

For an Hermitian operator one can equivalently consider only the real part of this
expression since the imaginary part is vanishingly small in the large N limit.

Consider as an example the one-particle density matrix of the gas, usually defined
as:
PO (2, 2') = <\I/T(x')\ll(x)> . (7.12)

Inserting in this expression our form of the complete density matrix eq.(7.10), we
obtain the simple result

PV (@,a') = N (1(@)s(e) {ealo)™ ) (7.13)
from which it is easy to obtain the spatial density n(z) = p(!)(z,z) and the correla-
tion function ¢ (z, ') = pM (x, 2")/(n(x)n(z’))"/2. Also, the condensate fraction can
be obtained from the largest eigenvalue of p()(z, 2').

Remarks:

1. The desired stochastic evolution, which has to satisfy Tr[p] = 1, cannot pre-

serve the normalization of ¢;  to unity; we can write indeed

Telp(t)] = ((ea2()len®)Y) =1 (7.14)

stoch
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which for |¢1) # [¢o) imposes ||¢1|| ||¢of| > 1.

2. The expansion eq.(7.9) is always possible with a positive distribution function
Pi(¢1, p2). We prove this statement by showing that a general density operator
p can be written as in eq.(7.10) in the limit N' — +o0. Using the identity

M
1 . .
_ T (@) ARG
Idy = Mlgglroo ™ ;:1 \N 0 ><N S \ (7.15)

where the functions ¢) have a uniform distribution over the unit sphere in
the functional space, we obtain

M
: 1 1 . j2 . 1 . j2
p=Jim o >INV RN N ) (7.16)

J1,g2=1

This expression is not yet in the form of eq.(7.10) since the matrix elements
(N : pUD|p|N : )U2)) are complex. Fortunately we can always write this matrix
element as the 2N-th power of the complex number &, ;,). It is then sufficient
to set ¢\ = YUV, 4 and pSi2) = ¢(j2)§6.17j2), to put N' = M? and to
reindex (ji, j2) as a single index i, in order to recover the expansion eq.(7.10).
Note that this expansion is not unique and does not have the pretension to
be the most efficient one. For instance if the system is initially in a Hartree
state |V : ¢yp), such a procedure is clearly not needed since one has just to set

gi)(t =0) = qﬁg) (t = 0) = ¢o. This will be the case of the numerical examples
in sections 7.3 and 7 4.

7.1.2 Stochastic evolution of a Fock state Hartree dyadic

In this subsection we calculate the stochastic time evolution during an infinitesimal
time interval dt of the dyadic o(t) given in eq.(7.7). This will be used later in a
comparison with the exact master equation.

After dt, the dyadic o has evolved into:
ot +dt) = N : 1+ dén )N : 6o+ dal, (7.17)

where d¢; and d¢,, defined according to eq.(7.8), contain both the deterministic con-
tribution F,dt and the stochastic one dB,. Splitting each contribution into a lon-
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gitudinal and an orthogonal component with respect to ¢, and isolating a Gross-

Pitaevskii term in the deterministic contribution, we can write:

dBao () = ¢u(x) dya + dBy (z) (7.18)
Fo(z) = FSP(2) + Mata(x) + Fi (). (7.19)

Our choice of the Gross-Pitaevskii term is the following one:

= ! i D [ Vie =) 6u) ] 0uto

1 {< 1) (padalV[dada)
ih 2 |6l

The first term gives the standard Gross-Pitaevskii evolution, i.e. the kinetic term, the

] Pa(T). (7.20)

potential energy of the trap and the mean-field interaction energy; the second term,
which arises naturally because we are considering Fock states (rather than coherent
states as commonly done) takes into account the difference between the total mean-
field energy per particle of the condensate and its chemical potential y.%”

We split the field operator in its longitudinal and transverse components, keeping
in mind that the wave functions ¢, are not of unit norm:

Ui(z) = ﬁg’ﬁl al, + 0Vl (z) (7.21)
with
al, = / dx do(z) Ul(z). (7.22)

The relevant bosonic commutation relations then read:
(a6, ab ] = ll6all*  and  [a4,, 0] (2)] =0. (7.23)

We will also need the projector Q,, onto the subspace orthogonal to ¢,:

QW (z,,...)] = v(z, ...

||¢aH2/ y & ( 2. (7.24)

This projector arises in the calculation as we have introduced a component of the
field operator orthogonal to ¢,. Using [dz ¢.(z) ¥l (z) = 0 we shall transform
integrals involving 6 U1 (z) as follows:

/ do vz, 2!, )5 (2) = / do Q9 (. o/, .. 5w (). (7.25)
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Inserting these definitions in eq.(7.17) the expression for o at time ¢ 4 dt can be
written as

ot +dt) — o(t)=SVIN: ¢ (N : o +ec.
n /dx SO (@SB (@)|N = 1: 61 ) (N : | + erc.
+ / / dz dz’ 8P (z, 2" )00l (2)6 U] () |N — 21 61 ) (N : o] + e.c.

+ //dx dr’ SUV (2, 2 )W (2)|N — 1: ¢ )(N — 1 : | 6Uy(2)
(7.26)
where the notation e.c. stands for the exchanged and conjugate of a quantity, i.e. the

complex conjugate of the same quantity after having exchanged the indices 1 and 2.
The explicit expressions for the S are:

SO = N%dt + N, dt + Ndvy, + N(Nf_l)dﬁ + N;d% v
1 (7.27)
sP(z) = VN {QY) [FEP(2)] dt + Fi-(x)dt + dBi (x)+
+(N = 1)dy; dBi (z) + N dBi (z) dvs } (7.28)
Sz, 2y = %_UdBf(x) dB}-(z') (7.29)
SUD(z 2"y = N dBj(x)dBy*(z)). (7.30)

Analogous expressions for 559, 58, 58 are obtained by exchanging the indices 1
and 2. In the next subsection, we evaluate the exact evolution of the same dyadic
during a time interval dt, so that we can determine the constraints on the force and
noise terms entering into these equations.

7.1.3 Exact evolution of a Fock state Hartree dyadic

To make the stochastic scheme described in the previous sections equivalent to the
exact dynamics as it is given by eq.(7.1), the final result of the previous subsection
eqs.(7.26-7.30) has to be compared with the exact evolution of the density matrix
o(t). Consider a dyadic o = |N : ¢1 )( N : ¢,| at time ¢; according to the equation of
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motion eq.(7.2), after an infinitesimal time step dt it has evolved into:

o(t+dt) = o(t)+ Zl—;_z (Ho(t) —o(t)H) =
= o(t)+ BN : ¢ ) (N : ¢o| +ecc. +
+ /de}”(x)axiq(x)\N_1;¢1><N:¢2\+e.c.

+ / / dz da’ E® (2, 2)60 ] (@)50] ()N — 2 63 )N : o] + ecc.

(7.31)
where the EY are given by
EO _ th {<¢1‘h0|¢1> i (N-1) <¢1¢1|V|¢1¢1>} 730
PSR el T2 el 73
dt\/ﬁ T N -1 ! / /

B (1) = ==} Kho + (HMQ) /dx V(e —a) |¢i(z )|2) ¢1(x)}
(7.33)
B, ) = T QOO (o~ 4o (1)) (7.34)

Analogous expressions for Eéo), Eél), Eéz) are obtained by exchanging the indices 1

and 2.

7.1.4 Validity conditions for the stochastic Fock state Hartree ansatz

The similarity of the structures of eq.(7.26) and eq.(7.31) suggests the possibility of
a stochastic scheme equivalent to the exact evolution: to achieve this, it is necessary
to find out specific forms of deterministic eq.(7.19) and stochastic eq.(7.18) terms for
which the mean values of the S equal the EY:

S0P - £ + £ 739
Sa () = B (@) (7.36)
m = E@(x,1") (7.37)
SO0z, 27) = 0. (7.38)

From the last equation eq.(7.38), it follows immediately why independent bras and
kets are needed in the ansatz eq.(7.7): in the case ¢; = ¢ = ¢ such a condition
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would in fact lead to a vanishing orthogonal noise and finally to the impossibility

of satisfying eq.(7.37).

In terms of the different components, these conditions can be rewritten as:
(AL + A7) dt + (N; D) [dy: +dvs | + Ndydys =0 (7.39)
Fi(z) dt + (N — 1)dBi () dy, + NdBj-(z) dv; =0 (7.40)
FiH(x) dt + (N — 1)dBy (z) dvy, + NdBy (z) dy; =0 (7.41)
ABE(x)dBL(a") = LO0K [V (x — 2/)ba(x)ou(x') (7.42)
dBi (x)dB3" (z') = 0. (7.43)

As we shall discuss in detail in sec.7.2, several different stochastic schemes can be
found satisfying eqs.(7.39-7.43); each of them gives an evolution identical in average
to the exact one, but the statistical properties can be much different.

7.1.5 A stochastic Hartree ansatz with coherent states

Up to now we have worked out the case of a Fock state ansatz |V : ¢; ) (N : ¢5|. Both
in quantum optics and in condensed matter physics, coherent states are often used
rather than Fock states We now show that a stochastic approach can be developed
using a coherent state ansatz of the form:

o(t) =TI(t) |coh : ¢q )( coh : ¢sl, (7.44)

where

|coh : ¢,) = exp (NUQ /dx gba(x)\iﬁ(x)) |vac) (7.45)

and N is the mean number of particles. We have included here a prefactor I1(¢)
which was absent in the case of the Fock state ansatz eq.(7.7); in the Fock state case
indeed such a prefactor could be reincluded into the definition of ¢; and ¢,. The
wave functions ¢,(x) and the prefactor factor II evolve according to Ito stochastic
differential equations

db, = Fodt + dB,
dIl = f dt + db. (7.46)

Splitting the field operator as
() = NY2 ¢ (x) + 604 (2) (7.47)
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and using
5, () |coh : ¢g) = 0. (7.48)

we find that the equivalence of the stochastic scheme and the exact evolution trans-
lates into the set of conditions:

F=0 (7.49)
Fy(z)dt + %db dBy(x) = j—;hoqﬁl (x) (7.50)
Fy(x)dt + %db* B, (z) = f—;ho@(x) (751)
ABala)dBa(s') = BV (& — o)) 00 (' 7.52)
dBy(z)dB;(x') = 0. (7.53)

Aswe shall see in sec.7.2, such conditions are satisfied by several stochastic schemes.
Very remarkably, the stochastic evolution deduced from the positive-P representa-
tion arises naturally as one of them.

Within this coherent state ansatz the one-particle density matrix is evaluated using

V(') = N{91(2)¢3(a') T1(t) exp(N (galén) ) . (7.54)

stoch

In a practical implementation of the simulation it turns out to be numerically more
efficient to represent 11(¢) as the exponential of some quantity

TI(t) = V50 (7.55)

and to evolve S(t) according to the stochastic equation

as = —/d:r [dBy(x)¢7(z) + dB3(x)de ()] +
_ % /d:r/dq;’ V(JJ — g;’) [|¢1(x)|2‘¢1(x/>|2 . \¢2(x)\2\¢2(x’)|2] . (7.56)

7.2 Particularimplementations of the stochastic approach

In the previous section we have derived the conditions that a stochastic scheme has
to satisfy in order to recover the exact evolution given by the Hamiltonian eq.(7.1); in
the case of the Fock state ansatz eq.(7.7), we get to the system eqs.(7.39-7.43), while in
the case of the coherent state ansatz eq.(7.44) we get to the conditions eqs.(7.49-7.53).
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As the number of these equations is actually smaller than the number of unknown
functions there is by no mean uniqueness of the solutions, that is of the simulation
schemes. We need a strategy to identify interesting solutions.

We therefore start this section by considering various indicators of the statistical
error of the simulation (sec.7.2.1 which can be used as guidelines in the search for
simulation schemes. These indicators are defined as variances of relevant quantities
which are conserved in the exact evolution but which may fluctuate in the simula-
tion. We show that these indicators are non decreasing functions of time; attempts
to minimize the time derivative of a specific indicator will lead to particular imple-
mentations of the general stochastic method, such as the simple scheme (sec.7.2.2)
and the constant trace scheme (sec.7.2.3).

7.2.1 Growth of the statistical errors

The first indicator that we consider measures the deviation of the stochastic operator
o(t) from the exact density operator p(t):

A(t) = (Trl(o (1) = pO) (o (t) = pt)]) =

stoch

— (o' (o))~ Tr[p(t)?]. (7.57)

stoch

We now show that A(t) is a non-decreasing function of time. When the stochastic
scheme satisfies the validity conditions derived in the previous section, we can write
the stochastic equation for ¢ as:

do = CZ—;[H, o] + do (7.58)
i

where do, is a zero-mean noise term linear in dB, (and db for the coherent state
simulation). In the case of simulation with Fock states it is given by

do, = N1/? {/dw dBy(2)UT(2)|N —1: ¢y (N : ¢o| +

+/dde;(x)w:¢1><N—1;¢2\@(x)}. (7.59)
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In the case of simulation with coherent states it is given by

dos = dblcoh : ¢y ){coh : o+

+N1/2H{/ dr B (x) ¥ (2)|coh < é1)(coh : dol +

+/dx dBj(z)|coh : ¢y )(coh :¢2\@(x)}. (7.60)

We calculate the variation of A during dt, replacing o by o0 +do in eq.(7.57) and keep-
ing terms up to order dt. Using the invariance of the trace in a cyclic permutation
and averaging over the noise between ¢t and ¢ + dt we finally obtain

dA = <Tr[do—§das]> , (7.61)

stoch

which is a positive quantity. Minimization of this quantity is the subject of sec.7.2.2.
Physically dA > 0 means that the impurity of the stochastic density operator o
always increases in average, while the exact density operator has a constant purity
Tr [p].

The second kind of indicator that we consider measures the statistical error on con-
stants of motion of the exact evolution. Consider a time independent operator X
commuting with the Hamiltonian. The stochastic evolution leads to an error on the
expectation value of X with a variance given by the ensemble average of

Ax(t) = ([TXo(n) - Tr[xp(t)])2> _

stoch

= (Inxom)[ ) ~[mixa]] @62

stoch

From eq.(7.58) we obtain the variation after a time step dt of the expectation value
of X along a stochastic trajectory:

dt
d(Tr[Xo]) = %Tr (X[H, o)) + Tr[Xdog). (7.63)
7
Using the invariance of the trace under cyclic permutation and the commutation
relation [H, X] = 0 we find that the first term in the right hand side of eq.(7.63)
vanishes so that

dAy = (|Te{xdo) 2>mh, (7.64)

a quantity which is always non-negative.
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Using expression eq.(7.64) one can design simulations preserving exactly the con-
served quantity, the constraint to meet being Tr[X do;] = 0: for instance in the Fock
state simulation, one first chooses the transverse noises dB; satisfying eqs.(7.42-
7.43); then one simply has to take for the longitudinal noise of ¢;:

B 1

drvy =
94! \/N

and a similar expression for dv,; finally the force terms F,, are adjusted in order to

(N2 6alXIN 2 00)) / dx dBH(1)(N : 6o X6U}(2)|[N—1: 6} (7.65)

satisfy eqs.(7.39-7.41). As natural examples of conserved quantities one can choose
X = 1or X = H; the former case is discussed in detail in sec.7.2.3.

7.2.2 The simple schemes

This scheme is characterized by the minimization of the incremental variation of the
statistic spread of the N-particle density matrix o(t), a spread that we have already
quantified in eq.(7.57) by A(t). To be more specific we assume that we have evolved
a dyadic up to time ¢, and we look for the noise terms that minimize the increase of
Tr[o'o] between t and ¢ + dt.

Simulation with Fock states

In the case of the Fock state ansatz, we calculate explicitly the variation of Tr[oTo]
from eq.(7.59) and we get:
dTr[o'o]

RS D I N * *
NTe[oTo] (dy1 + dyz) (di + dya) +

+ Z l|dal| 2 / dx dBx(z)dBx*(x) + [dy, + dv; +c.c]. (7.66)

a=1,2

We now look for the noise terms dv, and dB; minimizing this quantity under the
constraints eqs.(7.39-7.43).

We first note that we can choose dvy; = dv, = 0 without affecting the transverse
noises, as shown by eqs.(7.39-7.43): the correlation function of the transverse noises
do not involve the dv,, and we can accommodate for any choice of dv, by defining
appropriately the force terms F;-, \,. In the particular case defining our simple
scheme we take all these force terms equal to zero; note that the choice of vanishing
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d~’'s immediately leads to a vanishing noise term in eq.(7.66). Since the deterministic
part of the evolution is described by Gross-Pitaevskii equations which preserve the
norm of ¢, », and the eigenvalues (; » of the noise covariance operator dB, (x)dB(x')
have the upper bound (; » < V(0)dt||¢12||?/5, the stochastic equations do possess a
regular and non-exploding solution valid for all times so that no divergences can
occur within a finite time [273, §4.5].

Secondly the terms involving the transverse noise in eq.(7.66) are bounded from
below: As the modulus of a mean is less than or equal to the mean of the modulus,
we have

| dBE()ABL() | < dBH@)ABE () 7.67)
with the left hand side of this inequality fully determined by condition eq.(7.42).

For the remaining part of the present section sec.7.2.2 we assume that the interaction
potential V' (z) has a positive Fourier transform:

V(k) >0 forall k (7.68)

where the Fourier transform of V' (z) is defined as
V(k) = / dz V(x)e e, (7.69)

the repulsive Gaussian interaction potential used in sec.7.4 satisfies the condition
eq.(7.68). Note that as a consequence of eq.(7.68) and of the inverse Fourier trans-
form formula the model interaction potential is maximal and positive in z = 0:

V(0) > |V(z)| forallz. (7.70)

Under the assumption eq.(7.68) we have found for the transverse noise a choice
which both fulfills eqs.(7.42-7.43) and saturates the inequality eq.(7.67). We first
discretize the Fourier space with an arbitrarily small wavevector step dk and we set

1/2 1
aB; (x) = (d—é) QL [%(x) ZfﬂQ ()" “] 7.71)
k

where d is the dimension of position space. The phases 6, have the following statis-
tical property:
ew& (’f)ewa (+) = 5k,—k’ (772)

and 6, 6, are uncorrelated. In practice for half of the k-space (e.g. k, > 0) 0,(k) is
randomly chosen between 0 and 27; for the remaining k’s we take 0, (—k) = —60, (k).
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One can then check that this choice for the transverse noise reproduces the correla-
tion function eqs.(7.42-7.43).

We show now that the implementation eq.(7.71) saturates the inequality eq.(7.67)
and therefore leads to the minimal possible value for dTr[o'o] within the validity
constraints of the stochastic approach. We calculate explicitly the right hand side of
eq.(7.67):

ABL@)ABE () = T (9" — )nw)oa(a)]) =
_ it o v — (G, <¢a,¢aw\¢a,¢a>]
H10u@ [V0) 2 [ ay ey @ g 4 LBt 773

where 9} projects onto the subspace orthogonal to ¢, and where we have used the
positivity of the Fourier transform V' of the model interaction potential. The left
hand side of eq.(7.67) is calculated using eq.(7.42):

|ba(y)?
||l |?

As the expressions between square brackets in eqs.(7.74-7.73) are real we deduce the

(Pa; PalV|¢as Pa)
[|6all*

V(e —y)+

ABL(z)? — ;%gbi(x) {V(O) 9 / dy } (774)

equality in eq.(7.67).
We can now calculate explicitly the variation of Tr[o o] by integrating eq.(7.73) over
x:
dTr[oTo]  dt (Dar DalV|Pa, Pa)
A T av(o) — . (7.75
NTr[oto] ~ & © a;2 ||l I* )

This expression is particularly useful since it allows one to derive an upper bound
on the increase of Tr[oo]: as we assume here a positive Fourier transform of the
potential V(z — '), the matrix element (¢, ¢o|V [P0, ¢a) is also positive so that the
right hand side of eq.(7.75) is smaller than 2V (0)dt/h. After time integration we
obtain

Tr[o'o)(t) < Tr[o'o](0)e2NV /R (7.76)

Using eq.(7.57) and the fact that the trace of the squared density operator p? is a con-
stant under Hamiltonian evolution we can deduce an upper bound on the squared
statistical error A(t):

A(t) + Tr[p?] < [A(0) + Tr[p?]] 2NV OUR, (7.77)
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Note that it involves the model dependent quantity V/(0) and not only the physical
parameters of the problem such as the chemical potential or the scattering length.
It may be therefore important to adjust the model interaction potential V' (z — z’) in
order to minimize the growth of the statistical error for given physical parameters.

Simulation with coherent states

In the case of the coherent state ansatz, an explicit calculation of dTr [o07o] from
eq.(7.60) gives:

2

dTr[o'o]
+

Tr[oTo]

- % +N / dx dBy(z)¢;(x) + dBj(x)¢a(x)

- -

db .
Tty > / dz dB,(z)dB}(z) + c.c

a=1,2

+ N / dx dBy(x)¢](x) + dBj(x)pa(x). (7.78)

We now proceed to the minimization of the increment of Tr[o o] within the coherent
state ansatz along the same lines as the previous subsection. First we optimize the

noise db on the normalization factor II:
db = —NTI </ dx dBy(z)¢](x) + dB;(x)qbg(x)) ) (7.79)

This choice leads to a vanishing noise term in eq.(7.78). We insert this expression for
db in the validity conditions eq.(7.50) and eq.(7.51) and we obtain:

Fu(z) = % {ho LN / da' V(z — x')|¢a(x’)|2} 6o (). (7.80)

Finally minimization of the contribution of the noise terms dB,, with the constraint
eq.(7.52) is achieved with the choice

dt\"? Vak (o, N2
dB, () = (E) o) Xk: CETE (V(k)) ¢ it (k) (7.81)

where the phases 0, (k) are randomly generated as in eq.(7.72).

The first equation eq.(7.80) fixes the deterministic evolution to the usual mean-field
equation eq.(7.4). We note here that the mean-field term in eq.(7.80) does not contain
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the normalization of the spatial density N|¢,(z')|? by ||¢,||?, a feature present in the
Fock state simulation (see eq.(7.20)). This is a disadvantage of the coherent state
simulation since this normalization factor appearing in the Fock state simulation has
a regularizing effect: the norms ||¢,|| may indeed deviate significantly from unity
in the stochastic evolution. The second equation eq.(7.81) determines the stochastic
noise on the wave functions in a way very similar to the Fock state case eq.(7.71). In
particular the evolutions of ¢; and ¢, are still uncorrelated. The only difference is
the disappearance of the projector Q, in the expression of the noise, which leads to
an increased noise with respect to the simulation with Fock states.

As in the Fock state case, the deterministic evolution of the present scheme has a
Gross-Pitaevskii form and therefore conserves the norms ||¢; »||; this means that the
stochastic equations are again regular at all times and no divergences occur within

a finite time.

As in the previous subsection we now estimate the squared error A. We calculate
the variation of Tr[o o] for the choice of noise eq.(7.81):

1 dTrfo'o]  NV(0) )
Tl @~ h 2 Il (7.82)

a=1,2
The average over all stochastic realizations of the norm squared of the wave func-
tions can be calculated exactly:

(llgal?) (&) =V OM(lgal?)  (0). (7.83)

stoch
This leads to a remarkable identity on the trace of o'o:

<ln Tr[aTa]> (t) =

stoch

= <lnTr[aTa]> (0)+ N (etv(o)/ﬁ —1) < Z H¢a||2> h(o)' (7.84)

stoch stoc

a=1,2
Using finally the concavity of the logarithmic function, leading to the logarithm of
a mean being larger than the mean of the logarithm we obtain a lower bound on the

squared error A on the N—body density matrix:
A(t) + Tr[p?] > Aexp [2BN (V0" —1)] (7.85)
where we have introduced the constant quantities

A = exp [<1nTr[aTa]> (0)} (7.86)

stoch

B = %< Z HgbaH2>stoch(0> (787)

a=1,2
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We recall that a vanishing V'(0) would correspond here to an identically vanishing
interaction potential V' (z), according to eq.(7.70).

Final remark on the simple schemes

In the simple schemes the N—body density operator is obtained as a stochastic av-
erage of dyadics such as |coh : N1/2¢,)(coh : NV2¢,| or [N : ¢1)(N : ¢, where the
evolutions of ¢, and ¢, are fully decoupled and uncorrelated. This allows for an
interesting reinterpretation of our representation of the N—body density operator:
if the initial density operator is given by p(t = 0) = [N : ¢¢) (N : ¢/, at a time ¢ it
will be given by

p(t) = [ (£) (¥ (1) (7.88)

where the N —particle state vector is equal to
1 & |
(W(1)) =Timy oz >IN 2 69 (2)); (7.89)
j=1

here ¢\ are stochastic realizations with the initial condition ¢\/)(t = 0) = ¢.

7.2.3 The constant trace schemes

We have given the expression of the one-body density matrix p") in terms of ¢, ()
for the simulation with Fock states eq.(7.13). This expressions shows that p is very
sensitive in the large N limit to fluctuations of (¢2|¢1). The same remark applies
to two-body observables. In order to improve the statistical properties of the sim-
ulation one can consider the possibility of a simulation scheme exactly preserving
(¢2]¢1) = 1 atany time. This actually corresponds to a conserved trace of each single
dyadic o(t). For the case of the coherent state ansatz, such a requirement leads to
the well-known positive-P representation.

Simulation with Fock states

Within the Fock state ansatz, the conservation of the trace of the dyadic Tr[o| can
be achieved by (i) choosing the transverse noises dB; according to the formula
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eq.(7.71) and (ii) using the expression eq.(7.65) for the longitudinal noise with X = 1.
Point (ii) gives:

dn = ~(ealon)” [ do g3(a)dBL a). (7.90)
The forces terms )\, and F}, are fixed by the conditions eqs.(7.39-7.41):

N -1

A dt = ————(alén) / dz dz’ ¢3(x)¢3(« )dBE (2)dB(«)  (7.91)

and
Ft(x) dt = (N — 1) {pg| )" / da’ ¢3(2")dBi (2')dBi (z). (7.92)

The expressions for dvs, A and F;-(z) are obtained by exchanging the indices 1 and
2 in these results.

Simulation with coherent states

In the case of the coherent state ansatz, the value of do,, which is the zero-mean
noise term entering the variation of the dyadic ¢ during a time step dt, is given in
eq.(7.60). The requirement of a constant trace Tr[o] = I1eV{?21%1) leads to the follow-

ing condition on the noise terms
db+ NTI / dz (63(2)dBi(z) + dB(z)é1(x)) = 0. (7.93)

We choose the noise terms dB, as in eq.(7.81). The remaining parameters F,, are
now unambiguously determined by eqs.(7.50-7.51):

File) = g [l [ Nose Ve = o) o) 099
Fy(z) = % [ho + /dx' Nt (2" )V (x — l’/)(ﬁg(l’/):| oo(x). (7.95)

This scheme exactly recovers the stochastic evolution in the positive-P representa-
tion, which was originally obtained with a different mathematical procedure.'

7.3 Stochastic vs. exact approach for a two-mode model

In order to test the convergence of the stochastic schemes developed in the previ-
ous section we now apply this method to a simple two-mode system for which the
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exact solution of the N-body Schroédinger equation can also be obtained by a direct
numerical integration. This allows (i) to check that the stochastic methods when av-
eraged over many realizations give the correct result indeed, and (ii) to determine
the statistical error for each of the four implementations of the stochastic approach
(constant trace vs. simple, Fock vs. coherent states).

(a) | | (b)

0.1 L - ~ .

P.
S N

0.05 - ) . = / ) i

0.1

P,

0.05

1.5 0 2 4 6
Qt

FIGURE 7.1: Two-mode model: mean fraction of atoms in the mode a as func-
tion of time, obtained with (a) the positive-P representation, (b) the Fock state
simulation with constant trace, (c) the simple simulation with coherent states,
and (d) the simple simulation with Fock states. The solid line represents the av-
erage over N = 2 x 10° simulations, with corresponding error bars. The dashed
line is the direct numerical solution of the Schrodinger equation. The number
of atoms is V = 17, initially all in mode b. The interaction constant is x = 0.1€2.
The calculations in (a) and (b) have been stopped after the divergence of one
realization.

The toy-model that we consider describes the dynamics of two self-interacting con-
densates coherently coupled one to the other. It can be applied to the case of two
condensates separated by a barrier' (Josephson-type coupling) or condensates in
two different internal states coupled by an electromagnetic field** (Rabi-type cou-
pling). In this model we restrict the expansion of the atomic field operator to two
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orthogonal modes,
D() = dug(x) + buy(z). (7.96)

The Hamiltonian eq.(7.1) takes the simple form:

H = ? (a*iy n BTa) + B (a*%ﬁ n 6*262) (7.97)
where G, b annihilate a particle in modes A and B,  characterizes the strength of
the atomic interactions inside each condensate and (2 is the Rabi coupling ampli-
tude between the two condensates. Here we have restricted for simplicity to the
case where (i) the condensates have identical interaction properties, (ii) the interac-
tions between atoms in different modes are negligible, and (iii) the Rabi coupling is
resonant. The most general two-mode case could be treated along the same lines.

1 0 f I . I I . I
2

4 6 8 10
Qt

-
Qt

FIGURE 7.2: Statistical error on the N—body density matrix for the two-mode
model: (a) simple scheme with coherent states and (b) simple scheme with Fock
states. The solid line is the numerical result of the simulations. The dashed lines
in (a) and (b) correspond respectively to the lower and upper bounds eq.(7.85)
and eq.(7.77). The parameters are the same as in figure 7.1.

The direct numerical solution of the Schrédinger equation is performed in a basis
of Fock states |n,, ny) with n,; particles in modes A, B. The numerical integration
is simplified by the fact that n, + n, is a quantity conserved by the Hamiltonian
evolution. We start with a state in which all atoms are in mode B, either in a
Fock state |n, = 0,n, = N) (for the Fock state simulations) or in a coherent state
x exp(N'261)[0,0) (for the coherent state simulations). We watch the time evolu-
tion of the mean fraction of particles in mode 4, p, = (a'a)/N.
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Mean-field theory (the Gross-Pitaevskii equation), valid in the limit N > 1 with
a fixed kN/Q,%>?7 predicts periodic oscillations of (a'a)/N; the peak-to-peak am-
plitude of the oscillations is equal to unity if xN/Q < 1, and is smaller than one

135

otherwise.™ In the exact solution the oscillations are no longer periodic due to

emergence of incommensurable frequencies in the spectrum of H.

In the simulation method we evolve sets of two complex numbers representing the
amplitudes of the functions ¢;(z) and ¢,(x) on the modes u,;(z) (plus the II coeffi-
cient in the coherent state case). The results are presented in figure 7.1 for N = 17
particles which «/2 = 0.1 together with the result of the direct integration of the
Schrodinger equation.

The first row in the figure concerns the constant trace simulations. Figure 7.1a shows
results of the simulation based on the positive-P representation, that is the constant
trace simulation with coherent states. As well known'® this scheme leads to diver-
gences of the norm ||¢1|| ||¢2|| for some realizations of the simulation. We have cut
the plot in figure 7.1 at the first divergence. The same type of divergences occurs in
the constant trace simulation with Fock states. Note however that the characteristic
time for the first divergence to occur is somewhat longer. We have checked that
the probability distribution of ||¢;|| ||¢2|| broadens with time, eventually getting a
power law tail. The corresponding exponent o decreases in time below the critical
value a.i; = 3 for which the variance of ||¢1]] ||¢2|| becomes infinite. This scenario is
identical to the one found with the positive-P representation.'®

The simple simulation schemes plotted on the second row of figure 7.1 provide re-
sults which are at all time in agreement with the direct integration within the error
bars. Contrarily to the constant trace schemes we do not observe finite time diver-
gences in the simple schemes. For a given evolution time we have checked that the
error bars scale as 1/v/N where N is the number of stochastic realizations. For a
given NV we found that the error bars increase quasi-exponentially with time.

The noise in the simple simulation schemes is investigated in more details in figure
7.2 which shows the error estimator <Tr[aTa]>StOCh as function of time, for coherent
states in figure 7.2a and for Fock states in figure 7.2b. The coherent state result
confirms the prediction eq.(7.85). The Fock state result is found to be notably smaller
than the upper bound eq.(7.77). This is due to the fact that the terms proportional
to (o, 9a|V|@a, o) in €q.(7.75) are not negligible as compared to the term V'(0). We

have checked these conclusions for various values of N and x/(2.
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FIGURE 7.3: Fraction of atoms in mode « in the two-mode model, for the pa-
rameters of figure 7.1. The solid line with error bars is the result of the simple
scheme simulation with Fock states with A/ = 108 realizations. The dashed line
is the direct numerical solution of the Schrodinger equation. The quantum phe-

nomenon of collapse and revival of the oscillation amplitude clearly apparent
on the exact result is well reproduced by the simulation.

For a large number of particles it is known?” that the oscillations of (a'a) experience
a collapse followed by revivals. These revivals are purely quantum phenomena for
the field dynamics and they cannot be obtained in classical field approximation such
as the Gross-Pitaevskii equation. We expect to see a precursor of this phenomenon
even for the small number of particles N = 17. As the simple scheme simulation
with Fock states is the most efficient of the four schemes for the investigation of
the long time limit, we have pushed it to the time at which a revival can be seen, as
shown in figure 7.3. This figure is obtained with /' = 10® simulations.
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7.4 Stochastic approach for a one-dimensional Bose gas

The physical problem of the interacting Bose gas is in general a multi-mode prob-
lem, and the simulation schemes may have in this case a behavior different from the
one in a few-mode model such as in sec.7.3. We have therefore investigated a model
for a one-dimensional Bose gas. The atoms are confined in a harmonic trap with
an oscillation frequency w. They experience binary interactions with a Gaussian
interaction potential of strength g and range b:

Vie—2a) = m exp [—(z — 2')/(20%)] . (7.98)

(27
At time ¢t = 0 all the atoms are in the same normalized state ¢ solution of the time
independent Gross-Pitaevskii equation

B d% )

po(x) =~ 00 4 LmPao () + (N 1) / 02’ V(e — 2)|o(2) Po(z).  (7.99)

At time ¢ = 0" the trap frequency is suddenly increased by a factor two, which
induces a breathing of the cloud.?8-2%

This expected breathing is well reproduced by the numerical simulations. The mean
squared spatial width R? of the cloud as function of time is obtained by taking O =
S, #2/N in eq.(7.11) where i, is the position operator of the k—th particle. The
quantity R? is shown in figure 7.4 for the simulation schemes with Fock states. One
recovers the key feature of the constant trace simulation, that is a divergence of the
norm ||¢1|| ||¢2|| in finite time for some realizations. Before the occurrence of the first
divergence the stochastic variance of the size squared of the cloud, defined as

Var(R?)swod = % Z:: [R2(t) — R2(t)]” (7.100)
with
R2(t) = Re [ (N : 6§ (1)|OIN : 1" (1))] (7.101)

is notably smaller in the constant trace scheme than in the simple scheme, as shown
in figure 7.5a. This contrast between the two schemes for the statistical error on
one-body observables was absent in the two-mode model of sec.7.3.

We have also investigated the noise on the N—body density matrix characterized
by <Tr[aTa]> (see figure 7.5b). As expected this error indicator is smaller with

stoch
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FIGURE 7.4: Mean squared spatial width R? of a harmonically confined cloud
of N = 10 atoms as function of time. The breathing of the cloud is induced by
an abrupt change of the trap frequency from w to 2w. The width R is measured
in units of the harmonic oscillator length ay, = (h/(mw))'/2. The interaction
potential is chosen such that b = 0.5a, and g = 0.4hway, leading to a chemical
potential u = 1.7hw in the Gross-Pitaevskii equation eq.(7.99). The calculation is
performed on a spatial grid with 32 points ranging from —6ayn, to +6an, (with
periodic boundary conditions). e: constant trace simulation with A/ = 1000
realizations. For wt > 3.5 a divergence has occured for one of the realizations
and the calculation has been stopped. O: simple scheme simulation with N =
40000 realizations.

the simple scheme. For this simple scheme it varies quasi exponentially with time
with an exponent v ~ 4w, which is smaller by a factor roughly 2 than the one of
the upper bound eq.(7.77). This difference is due to the fact that the range b of the
interaction potential is chosen here of the same order as the size R of the cloud so
that the terms (¢,, @o|V|da, ¢o) nNeglected in the derivation of the upper bound are
actually significant. We have checked for various ranges b much smaller than R that
7 then approaches the upper bound 2NV (0)/A.

7.5 Conclusions and perspectives

In this chapter we have developed a new approach to the time-dependent bosonic
N—body problem.'”” The principle of the approach is to add to the usual mean-field
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FIGURE 7.5: For the one-dimensional Bose gas in the conditions of figure 7.4, (a)
stochastic variance of the size squared of the cloud and (b) noise on the N —body
density matrix. Solid lines: simple scheme with Fock states. Dashed lines: con-
stant trace scheme with Fock states.

Gross-Pitaevskii equation a stochastic term which recovers in the average the effect
of the atoms in modes other than the condensate. The general conditions ensuring
that the average over all possible realizations of this stochastic equation reproduces
the exact N—body Schrodinger equation have been determined and some of the
possible solutions characterized; each of them corresponds to a simulation scheme
with different statistical and stability properties.

Among the many possible ones, schemes which evolve either a Fock state (i.e. num-
ber states) ansatz or a coherent states one have been investigated, as well as schemes
which either minimize the statistical error on the N-body density matrix (simple
schemes) or keep the trace of the density matrix constant during the whole evo-
lution (constant trace schemes). Fock states are in fact best suited for dealing with
situations in which the total number of particles is conserved, such as a trapped
atomic Bose condensate, while coherent states are most likely to be useful when
there is a coherent external driving; the simple schemes are mathematically regular
at all times, while a practical use of the constant trace ones is made difficult by the
occurrence of divergences. In particular, the constant trace scheme with coherent
states recovers from a different point of view the well-known positive-P represen-
tation of quantum optics, which is here obtained following a procedure which is
alternative to the usual derivation based on analyticity properties.
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These simulation schemes have been applied to a two-mode model and to a one-
dimensional Bose gas. In both cases we have found that the constant trace schemes
lead to some diverging realizations, while the simple schemes lead to a statistical
spread on the N—body density operator increasing exponentially with time with an
exponent v o« NV(0). The simple schemes are therefore not well suited to deter-
mine small deviations from the mean-field approximation in the large N limit but
can be more efficiently applied to systems with a small number of particles, such as
small atomic clouds tightly trapped at the nodes or antinodes of an optical lattice.
Although in the numerical calculations of the present work we have limited our-
selves to simple one-body observable such as the size of the atomic cloud, the same
technique is immediately generalized to more elaborate observables such as the first
and second order correlation functions of the field. We have not presented here nu-
merical results for such quantities since the Hartree state taken as the initial state
of the system gas does not make much physical sense for what concerns higher or-
der correlations. More realistic initial states such as thermal equilibrium ones could
however be implemented simply by performing some evolution in imaginary time
in order to get the correct initial state and then a real time evolution in order to
follow the dynamics.

As a further possible extension of the present work, one could also try to use more
sophisticated ansatz than the simple Hartree state, such as squeezed states, or even
multimode ansatz, such as coherent superpositions of number states in several ad-
justable modes of the field.
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Although the physical systems which have been considered in the present thesis
are apparently completely different from each other, all of them can be considered
as different realizations of the same physical concept, the interacting quantum Bose
field; the propagation of light waves in nonlinear semiconducting microstructures
and of collisionally interacting atomic matter waves can be described within very
similar theoretical frameworks and the strict analogies have allowed for a very fruit-
ful exchange of ideas between the two fields.

The first part of the thesis contains a detailed discussion of nonlinear (photon) op-
tical effects which can be observed in semiconducting dielectric structures; the lin-
ear refractive index profile of the system modifies the mode structure of the pho-
tonic field, while the optical nonlinearities give additional coupling terms between
modes. In particular, we have addressed the case of DBR microcavities, which show
energetically well-spaced and spatially localized cavity modes (chap.1); if the cavity
is grown with a material showing an intensity-dependent refractive index (chap.2),
optical bistability and optical limiting can be observed at reasonable values of the

incident light intensity.?¢¢*

With an eye to all-optical signal processing, we have
discussed configurations which could result useful for either the amplification of an

optical signal (optical transistor) or the realization of a bit of optical memory.”%”

The following chap.3 is devoted to the analysis of a different kind of optical nonlin-
earities, which arise in DBR microcavities from resonant two-photon processes such
as resonant second-harmonic generation and resonant two-photon absorption.”®””
Specific signatures of the optical nonlinearity have been discussed in the transmis-
sion spectra of the cavity, such as a two-photon Rabi splitting of the resonant tun-
neling peak. In addition, we have considered the linear optical response to a weak
probe beam when the cavity is dressed by a strong and coherent pump beam; in

analogy with the usual optical Stark effect, the resulting shifts and splittings of
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the excitonic spectral features for growing pump intensity have been interpreted
as a two-photon optical Stark effect. A quantitative estimate of the light intensities
needed for the actual observation of such effects in GaAs based systems has been
given.

The second part of the thesis is focussed on the propagation of interacting matter
waves through optical lattices: thanks to the strict analogy between the coherent
light field of an optical laser and the coherent matter waves of Bose-condensates
and atom lasers which is described in full detail in chap.4, the same ideas described
in the first part of the thesis for the case of semiconducting structures can be applied
to the propagation of matter waves in optical lattices. The periodic optical poten-
tial can be interpreted as forming a distributed Bragg reflector for matter waves; an
atomic Fabry-Perot cavity is readily obtained by using a spatially modulated optical
lattice.”*1% Localized discrete quasi-bound states are apparent in the correspond-
ing transmission spectra and can be used in nonlinear atom optical experiments to
observe atom optical limiting and atom optical bistability. Furthermore, we have
shown how the reflection of matter waves on optical lattices can be used for the

experimental determination of the coherence length of an atom laser.”®

Thanks to the much stronger collisional atom-atom interactions with respect to the
effective photon-photon ones in nonlinear dielectric media, nonlinear optical effects
at low intensities should be more likely to be observed with matter waves than with
light waves; this means that the Gross-Pitaevskii equation for the atomic field is
more likely to fail than the wave equation of classical Maxwell’s electrodynamics in
nonlinear dielectric media. In particular (chap.6), if the transmission properties of a
single-mode nonlinear device are substantially modified by the presence of a very
small number of quanta, the transmitted field can have definitely nonclassical prop-
erties, while it is well approximated by a classical field if the nonlinearity threshold

corresponds instead to a large number of quanta.?®®

While the simplicity of the single mode model has allowed for a complete solution of
the quantum optical properties in terms of the quantum master equation in the Fock
basis, an analogous approach for a multimode system is practically unfeasible be-
cause of the huge dimensionality of the corresponding Hilbert space. We conclude
the thesis (chap.7) with a detailed account of a novel reformulation of the interacting

7 such an

Bose gas problem in terms of the stochastic evolution of Hartree states:'”
approach is expected to be able to handle the non-trivial correlations which appear

in a non-dilute magnetically trapped Bose condensed cloud as well as the photon
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statistics in a strongly nonlinear planar cavity; in particular, it looks most promising
for the numerical study of multimode systems involving a relatively small number
of strongly interacting particles. Among the many possible implementations of the
method, schemes have been found which are not subject to the divergences typical
of Positive-P calculations since the corresponding stochastic differential equations
have a regular solution for all times; Positive-P representation naturally arises as
the constant trace scheme with coherent states. First examples of application of the
approach to simplest physical systems such as a two-mode model of a Josephson
junction and a one-dimensional Bose gas have been discussed.

At the end of these lengthy discussions, we may be tempted to conclude that physics
is a sort of Sysiphus torment: the more problems you solve, the more unsolved
problems you will find yourself interested in. But, as it is well known by any atomic
physicist, Sysiphus is a good guy who can never disappoint us, so let’s try to enu-
merate the most interesting steps to do in the next future.

Most of the subjects discussed in the thesis allow for a number of possible develop-
ments: first of all, while nonlinear optical effects are currently observed with light
waves, the development of nonlinear atom optics will be matter of intense inves-
tigations in the next years both from the theoretical and the experimental points
of view. The discussion of the atomic Fabry-Perot cavity contained in chap.5 has
dealt with a very simplified one-dimensional model with a continuous wave coher-
ent driving; since a cw atom laser has not been realized yet and truly single-mode
atomic waveguides are difficult to obtain, an extension of our calculations to more
realistic geometries could reserve interesting surprises. In particular, since the load-
ing of a BEC in a magnetic waveguide has been recently obtained, predictions for
the behaviour of a finite pulse of atoms interacting with an optical lattice within
a waveguide will hopefully be soon necessary for the interpretation of experimen-
tal data; such a geometry corresponds to the propagation of a strong light pulse
through a nonlinear optical cavity: thanks to the nonlinear atom-atom interactions,
pulse compression and reshaping via mode-locking effects could eventually be ob-
served.

In the last years there has been a renewed interest for two-quantum nonlinear pro-
cesses such as the second harmonic generation and the two-photon absorption con-
sidered in chap.3: the forthcoming realization of molecular condensates coherently
coupled to atomic ones via photo-association transitions can in fact be considered
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as a sort of second harmonic generation of matter waves. While the mean-field the-
ory of such a system can be easily developed as a set of Gross-Pitaevskii equations
mutually coupled by quadratic terms, a complete characterization of the quantum
effects which may arise is far from being available; as in the case of the quartic in-
teraction term in the Hamiltonian, only a linearized analysis has been done so far
and a discussion of the correlations within each of the modes as well as between the
modes still has to be done. If we are allowed to perform a few-modes approxima-
tion like in chap.3, an exact calculation can be performed in terms of the quantum
master equation in a simple Fock basis as in chap.6; in this way, all the coherence
properties of the system can be completely characterized. However, since conven-
tional magnetic and optical traps are not tight enough for only a small number of
tield modes to be relevant, a theory capable to handle a multimode and spatially
distributed field is necessary but, unfortunately, is not available yet. For this rea-
son, an extension of the stochastic approach of chap.7 to other forms of nonlinear
coupling could therefore have important applications for the study of the quantum

correlations in coupled atomic and molecular condensates.

As we have previously discussed, the stochastic wavefunction method itself de-
serves further developments both from the point of view of the improvement of its
efficiency and from the point of view of its application to concrete problems. On
one hand, a generalization of the initial ansatz by including squeezed states or mul-
timode Fock states from the beginning should give an even larger freedom in the
choice of the simulation scheme and therefore improve the efficiency of practical
numerical calculations: a wider ansatz allows in fact for a reconstruction of a given
quantum state in terms of a smaller number of states and therefore requires a smaller
number of Monte Carlo realizations for an efficient sampling of the observables. In
order to correctly implement the initial state of the system as either the ground state
of the many-body system or a thermodynamical equilibrium state at temperature T,
a straightforward extension of the stochastic approach to imaginary time evolution
can be used. Unlike conventional quantum Monte Carlo techniques, the stochastic
wavefunction approach should be able to handle all kinds of observables and all
kinds of Hamiltonians; in particular, it could be applied also to many-body prob-
lems of large actual relevance such as the enucleation and the stability of vortices in
Bose-condensed clouds.

In the domain of optics, our stochastic method could for example be applied to
the dynamics of the light field in planar microcavities: while a weak nonlinearity



Conclusions and future developments

207

regime can be successfully handled in terms of the linearized equations of Positive-
P representation, the strong nonlinearity regime requires a treatment able to recover
all the peculiar coherence properties of such a strongly-interacting two-dimensional
Bose gas. From the experimental point of view, planar microcavities provide in
fact an alternative route towards the realization of two-dimensional Bose gases and
the strong coupling of light to delocalized excitonic states can be exploited to en-
hance the strength of the nonlinear interaction. With respect to atomic systems,
experimental access to the coherence properties of the gas can be obtained simply
by looking at the transmitted light through the cavity: as a simplest example, the
Bogoliubov dispersion of the fluctuations should reflect in the angular pattern of
incoherently transmitted light. In addition, solid-state samples allow for the investi-
gation of the response of the interacting photon gas to external disturbances such as
cavity roughness, phonons and even localized optical transitions: the modification
of the dispersion relation from the one of a non-interacting gas to the Bogoliubov-
like one of the interacting gas is expected to have profound consequences on such
effects, which could be interpreted as the photonic analog of the superfluidity of
‘He.
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Brevity and clarity reasons have forced me to skip in the present thesis several inter-
esting topics which have been subject of intense work during this three-year period,
but do not fit in the main development of my research activity.

The first of them is certainly the theoretical analysis of prof.M.Inguscio’s experi-
ment for the measure of the fine structure constant o on *He atoms, from which
my interest in atomic physics has begun: in the first months of 1998, the helium ex-
perimental group at LENS (Firenze), which was spectroscopically measuring some
transition frequency, had remarked a slight dependence of the linecenter position
on the parameters of the experimental setup and, in particular, on the interaction
time between the atoms and the light. Since the purpose of the experiment was
a precision measure of the transition frequency in order to infer a reliable value of
the a fine-structure constant,?! such a slight frequency shift had an interest not only
from a fundamental point of view, but also from an applicative one, since it risked to
compromise the precision of the measure. In close connection with numerical simu-
lations performed by G.Giusfredi and in collaboration with M.Artoni, a theoretical
model has been developed, which has been able to account for the experimental re-
sults and to give a simple physical picture of the effect in terms of Doppler cooling
and heating.

e EMinardi, M. Artoni, P.Cancio, M.Inguscio, G.Giusfredi and I.Carusotto, Fre-
quency-shift in saturation spectroscopy induced by mechanical effects of light, Phys.
Rev. A 60, 4164 (1999)

Abstract: We report on a substantial light-force-induced line-center shift of the
sub-Doppler dip in a saturation spectroscopy configuration where mechanical
effects are expected to be negligible. We observe the shift on the 23S, — 23P;
open transition of 4He that is relevant for a determination of the fine-structure
constant [Phys. Rev. Lett. 82, 1112 (1999)]. We discuss the physical origin
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of the shift and we provide a numerical analysis to support our interpretation.
The shift can be quite important for various other high-precision spectroscopy
measurements

e M.Artoni, I.Carusotto and FMinardi, Light-force induced fluorescence line-center

shifts in high precision optical spectroscopy: simple model and experiment, Phys. Rev.
A 62, 023402 (2000)
Abstract: We calculate the effect of light—induced forces on the fluorescence
line—shape of a two—level atom crossing at right angle a lin || lin polarized
standing wave laser field in a common configuration for ultra-high precision
optical spectroscopy. For an incident atomic beam with a narrow spread of
transverse velocities the dipole force induces a red-shift of the fluorescence
maximum while in the reverse case of a wide spread of transverse velocities
the radiation—pressure force induces a blue—shift of the saturation dip mini-
mum. We then use our theory to explain a blue-shift of the saturation line—
center dip occurring for the closed transition 235, — 23P, of a ‘He beam. The
observed shift, which is in quite good agreement with the theory, can be of the
order of 1/10 of the transition natural linewidth and hence quite important for
ultra high—precision spectroscopy measurements.

In the last months of 1998, a collaboration with prof.F.Beltram’s experimental group
has taken place on the subject of resonant second-harmonic generation in ZnSe DBR
microcavities: as we have discussed in detail in chap.3, resonant enhancement of
the generated harmonic intensity is a key tool both for obtaining high conversion
efficiencies in the generation of blue-green light and for the observation of novel
nonlinear optical effects. Our work has consisted in a quantitative estimation of
the generated harmonic intensity and, specifically, of the enhancement factor intro-
duced by the resonance of the harmonic frequency with a cavity mode in the actual
experimental setup.

e V.Pellegrini, R.Colombelli, I.Carusotto, F.Beltram, S.Rubini, R.Lantier,
A Franciosi, C.Vinegoni and L.Pavesi, Resonant second harmonic generation in
ZnSe bulk microcavity, Appl.Phys.Lett 74, 1945 (1999)
Abstract: Room-temperature resonant second harmonic generation is demon-
strated in a ZnSe bulk microcavity with SisN,/SiO, Bragg reflectors. The res-
onance occurs at the second harmonic wavelength in the blue-green spec-
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tral region and yields an enhancement of one order of magnitude in the sec-
ond harmonic process. Tunability of the resonant effect between 480nm and
500nm is achieved by varying the angle of incidence.

In the first half of 1999, during my stay at the Laboratoire Kastler-Brossel in Paris,
my research activity has been followed by prof.J.Dalibard and prof.Y.Castin and has
been mainly focussed on two theoretical projects in the field of quantum atom op-
tics and atom lasing. The first project, which has absorbed the greatest portion of
my time, consists in the development of a novel reformulation of the interacting
bosonic N-body problem in terms of the stochastic evolution of Hartree states and
has been described in full detail in chap.7. The other project consists in the study
of evaporative cooling of an atomic beam which is propagating along a magnetic
atomic waveguide; cooling is provided by transverse evaporation and thermaliza-
tion of the third degree of freedom is guaranteed by elastic collisions. Calculations
have been performed mainly by E.Mandonnet, A.Minguzzi and R.Dum using two
different and complementary methods, an approximate analytical solution of the
Boltzmann equation and an atom dynamics Monte-Carlo simulation; the results of
the two approaches are in very good agreement with each other. My main task has
been the study of the final stage of the evaporation at the onset of quantum degener-
acy, when stimulation of the collisional cross-section begins to be important; at the
moment, a complete theory has not been developed yet, but interesting results have
already been obtained both for the case of single-mode waveguide and for the case
of a multi-mode one. The experiment has recently started in the same laboratory
and seems very promising from the point of view of a obtaining a continuous wave
atom laser.

e E.Mandonnet, A.Minguzzi, R.Dum, [.Carusotto, Y.Castin and J.Dalibard, Evap-
orative cooling of an atomic beam, Eur.Phys.].D 10, 9 (2000)
Abstract: We present a theoretical analysis of the evaporative cooling of an
atomic beam propagating in a magnetic guide. Cooling is provided by trans-
verse evaporation. The atomic dynamics inside the guide is described by solv-
ing the Boltzmann equation with two different approaches: an approximate
analytical ansatz and a Monte-Carlo simulation. Within their domain of validity,
these two methods are found to be in very good agreement with each other.
They allow us to determine how the phase-space density and the flux of the
beam vary along its direction of propagation. We find a significant increase for
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the phase-space density along the guide. By extrapolation, we estimate the
length of the beam needed to reach quantum degeneracy.

Y.Castin, R.Dum, E.Mandonnet, J.Dalibard, A.Minguzzi and I.Carusotto, Co-
herence properties of a continuous atom laser, submitted for publication on Journal
of Modern Optics (2000)

Abstract: We have recently proposed to evaporatively cool an atomic beam in
a magnetic guide to produce a continuous “atom laser”. The coherence prop-
erties of the atomic beam in the quantum degenerate regime are investigated
here at thermal equilibrium. The gas experiences two-dimensional, transverse
Bose-Einstein condensation rather than a full three-dimensional condensation
because of the very elongated geometry of the magnetic guide, First order
and second order correlation functions of the atomic field are used to charac-
terize the coherence properties of the gas along the axis of the guide. The
coherence length of the gas is found to be much larger than the thermal de
Broglie wavelength in the strongly quantum degenerate regime. Large inten-
sity fluctuations present in the ideal Bose gas model are found to be strongly
reduced by repulsive atomic interactions; this conclusion is obtained with a
one-dimensional classical field approximation valid when the temperature of
the gas is much higher than its chemical potential k5T > |u|.

In the first months of 2000, we have started to study the propagation dynamics of

ultra-slow light pulses in coherently driven Bose condensed atomic gases and, in

particular, the effect of atomic recoil on the group velocity of light. Calculations

performed in collaboration with M. Artoni have shown that, depending on the cho-

sen geometry and level scheme, a lower bound to the observable group velocities

can be observed as well as pulse propagation at negative group velocities without

appreciable absorption.

I.Carusotto, M. Artoni and G.C.La Rocca, Atomic recoil effects in slow light prop-
agation, JETP letters 72, 420 (2000).

Abstract: We theoretically investigate the effect of atomic recoil on the prop-
agation of ultra-slow light pulses through a coherently driven Bose-Einstein
condensed gas. For a sample at rest, the group velocity of the light pulse
is the sum of the group velocity that one would observe in the absence of
mechanical effects (infinite mass limit) plus the velocity of the recoiling atoms
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(light dragging effect). We predict that atomic recoil may give rise to a lower
bound for the observable group velocities as well as to pulse propagation at
negative group velocities without appreciable absorption.
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